According to sine law:

\(\displaystyle\frac{{{\sin{{A}}}}}{{a}}=\frac{{{\sin{{B}}}}}{{b}}=\frac{{{\sin{{C}}}}}{{c}}\)

Thus, (sin alpha)/1.6=(sin 41.253^@)/1.751ZSK

\(\displaystyle{\sin{\alpha}}=\frac{{{1.6}\cdot{\sin{{41.253}}}^{\circ}}}{{1.751}}\)

\(\displaystyle{\sin{\alpha}}={0.60252}\)

\(\displaystyle\therefore\alpha={37.051}^{\circ}\)

Now, using triangle property

\(\displaystyle{A}+{B}+{C}={180}^{\circ}\)

\(\displaystyle\alpha+\beta+{41.253}={180}^{\circ}\)

\(\displaystyle{37.051}+\beta={180}^{\circ}-{41.253}^{\circ}\)

\(\displaystyle\beta={138.747}-{37.051}\)

\(\displaystyle\therefore\beta={101.696}^{\circ}\)

Therefore,

\(\displaystyle\alpha={37.051}^{\circ}\)

\(\displaystyle\beta={101.696}^{\circ}\)

\(\displaystyle\frac{{{\sin{{A}}}}}{{a}}=\frac{{{\sin{{B}}}}}{{b}}=\frac{{{\sin{{C}}}}}{{c}}\)

Thus, (sin alpha)/1.6=(sin 41.253^@)/1.751ZSK

\(\displaystyle{\sin{\alpha}}=\frac{{{1.6}\cdot{\sin{{41.253}}}^{\circ}}}{{1.751}}\)

\(\displaystyle{\sin{\alpha}}={0.60252}\)

\(\displaystyle\therefore\alpha={37.051}^{\circ}\)

Now, using triangle property

\(\displaystyle{A}+{B}+{C}={180}^{\circ}\)

\(\displaystyle\alpha+\beta+{41.253}={180}^{\circ}\)

\(\displaystyle{37.051}+\beta={180}^{\circ}-{41.253}^{\circ}\)

\(\displaystyle\beta={138.747}-{37.051}\)

\(\displaystyle\therefore\beta={101.696}^{\circ}\)

Therefore,

\(\displaystyle\alpha={37.051}^{\circ}\)

\(\displaystyle\beta={101.696}^{\circ}\)