I ran across a cool series I have been trying to chip away at.

$\sum _{k=1}^{\mathrm{\infty}}\frac{\zeta (2k+1)-1}{k+2}=\frac{-\gamma}{2}-6\mathrm{ln}(A)+\mathrm{ln}(2)+\frac{7}{6}\approx 0.0786\dots $

$\sum _{k=1}^{\mathrm{\infty}}\frac{\zeta (2k+1)-1}{k+2}=\frac{-\gamma}{2}-6\mathrm{ln}(A)+\mathrm{ln}(2)+\frac{7}{6}\approx 0.0786\dots $