Formula used:

Volume \(\displaystyle=\int\int\int{\left(\div{F}\right)}{d}{v}\)

V=(0,0,z)

\(\displaystyle\div{F}=\frac{{d}}{{{\left.{d}{x}\right.}}}{\left({0}\right)}+\frac{{d}}{{{\left.{d}{y}\right.}}}{\left({0}\right)}+\frac{{d}}{{{\left.{d}{z}\right.}}}{\left({z}\right)}\)

On solving the value,

div F=0+0+1=1

Volume \(\displaystyle=\int\int\int{\left(\div{F}\right)}{d}{v}\)

Where,

\(\displaystyle{d}{v}=\frac{{4}}{{3}}\pi{r}^{{3}}\)

\(\displaystyle{x}^{{2}}+{y}^{{2}}+{z}^{{2}}={1}={r}^{{2}}\)

Where, r=1

Substituting the value of r, then the required value is (4pi)/3ZSK