Please could somebody explain how the expression involving $\theta $ that

$\frac{1+\mathrm{sin}\theta}{5+3\mathrm{tan}\theta -4\mathrm{cos}\theta}$

approximates to for small values of $\theta $ is $1-2\theta +4{\theta}^{2}$?

$\frac{1+\mathrm{sin}\theta}{5+3\mathrm{tan}\theta -4\mathrm{cos}\theta}$

approximates to for small values of $\theta $ is $1-2\theta +4{\theta}^{2}$?