${M}_{{Z}_{n}}(t)={\left(\frac{3{e}^{\frac{-t}{4\sqrt{n}}}+{e}^{\frac{3t}{4\sqrt{n}}}}{4}\right)}^{2n}$

Calculate $\underset{n\to \mathrm{\infty}}{lim}{M}_{{Z}_{n}}(t)$ and interpret the result

Adriana Ayers
2022-06-27
Answered

If

${M}_{{Z}_{n}}(t)={\left(\frac{3{e}^{\frac{-t}{4\sqrt{n}}}+{e}^{\frac{3t}{4\sqrt{n}}}}{4}\right)}^{2n}$

Calculate $\underset{n\to \mathrm{\infty}}{lim}{M}_{{Z}_{n}}(t)$ and interpret the result

${M}_{{Z}_{n}}(t)={\left(\frac{3{e}^{\frac{-t}{4\sqrt{n}}}+{e}^{\frac{3t}{4\sqrt{n}}}}{4}\right)}^{2n}$

Calculate $\underset{n\to \mathrm{\infty}}{lim}{M}_{{Z}_{n}}(t)$ and interpret the result

You can still ask an expert for help

asked 2020-12-16

The figure shows the surface created when the cylinder ${y}^{2}+{Z}^{2}=1$ intersects the cylinder ${x}^{2}+{Z}^{2}=1$. Find the area of this surface.

The figure is something like:

asked 2021-01-16

Find the limits:
As $x\to \mathrm{\infty},\frac{-2x({x}^{2}+4)}{-7-7{x}^{4}}$

asked 2021-11-06

Discuss the continuity of the function

on the open interval

asked 2021-10-20

Evaluate the following limits.

a)$\underset{x\to \mathrm{\infty}}{lim}(-40{x}^{2}-36{x}^{3})$

b)$\underset{x\to -\mathrm{\infty}}{lim}(-40{x}^{2}-36{x}^{3})$

a)

b)

asked 2022-06-14

The sequence $n\mathrm{sin}(\sqrt{4{\pi}^{2}{n}^{2}+{x}^{2}})$ converges on compacts

asked 2021-10-25

Find the limit and discuss the continuity of the function.

$\underset{(x,y)\to (2,4)}{lim}\frac{x+y}{{x}^{2}+1}$

asked 2022-06-20

I have to solve this limit without using l'Hospital rule, the answer is 1/2

$\underset{x\to 0}{lim}\frac{\mathrm{tan}({x}^{2})}{({e}^{2x}-1)\mathrm{sin}x}$

$\underset{x\to 0}{lim}\frac{\mathrm{tan}({x}^{2})}{({e}^{2x}-1)\mathrm{sin}x}$