You have been asked to bake the birthday cake of a little girl who is about to turn three. When looking up suggestions online on how to bake this cake, you found that most everyone suggests baking the cake in smaller circular cake pans that have a diameter of 6 inches. That’s the best way to get the height for the unicorn head. A normal circular cake pan (and the only kind you have) has a diameter of 9 inches. You need to buy cake pans. As an experienced baker, you know that the recipe you are planning on using usually fills two regular (9-inch) cake pans, with a little room to spare. How many 6-inch pans do you need to buy? (We’re going to assume that all cake pans are the same height.)

Question
Quadratics
asked 2021-01-24
You have been asked to bake the birthday cake of a little girl who is about to turn three. When looking up suggestions online on how to bake this cake, you found that most everyone suggests baking the cake in smaller circular cake pans that have a diameter of 6 inches. That’s the best way to get the height for the unicorn head. A normal circular cake pan (and the only kind you have) has a diameter of 9 inches. You need to buy cake pans. As an experienced baker, you know that the recipe you are planning on using usually fills two regular (9-inch) cake pans, with a little room to spare. How many 6-inch pans do you need to buy? (We’re going to assume that all cake pans are the same height.)

Answers (1)

2021-01-25
Volume of 9-inch cake pan: Let the height of the 9-inch cake pan =x. The formula to calculate the volume of a cake pan, V= pir^2h, where h is the height of the pan. Therefore, the volume of the 9-inch cake pan, V= 9xpi. This implies the 9 inch cake pan can hold 9xπ litres of cake batter. Volume of 6-inch cake pan: Assume that all cake pans are the same height. Then the height of the 6-inch cake pan =x. The volume of the 6-inch cake pan, V= 6xpi. This implies the 6 inch cake pan can hold 6xπ litres of cake batter. Given that the recipe fills two 9 inch cake pans. Say, the recipe yields y litres of cake batter. Then, y=2(9xpi)To find the number of cake pans to be bought: Let the number of cake pans to be bought =n. Then, we need to find n such that, y=n(6xpi) 2(9xpi)=n(6xpi) 18xpi=n(6xpi) n=18/6 n=3
0

Relevant Questions

asked 2020-10-23
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P \((A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).\)
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
asked 2021-01-31
factor in determining the usefulness of an examination as a measure of demonstrated ability is the amount of spread that occurs in the grades. If the spread or variation of examination scores is very small, it usually means that the examination was either too hard or too easy. However, if the variance of scores is moderately large, then there is a definite difference in scores between "better," "average," and "poorer" students. A group of attorneys in a Midwest state has been given the task of making up this year's bar examination for the state. The examination has 500 total possible points, and from the history of past examinations, it is known that a standard deviation of around 60 points is desirable. Of course, too large or too small a standard deviation is not good. The attorneys want to test their examination to see how good it is. A preliminary version of the examination (with slight modifications to protect the integrity of the real examination) is given to a random sample of 20 newly graduated law students. Their scores give a sample standard deviation of 70 points. Using a 0.01 level of significance, test the claim that the population standard deviation for the new examination is 60 against the claim that the population standard deviation is different from 60.
(a) What is the level of significance?
State the null and alternate hypotheses.
\(H_{0}:\sigma=60,\ H_{1}:\sigma\ <\ 60H_{0}:\sigma\ >\ 60,\ H_{1}:\sigma=60H_{0}:\sigma=60,\ H_{1}:\sigma\ >\ 60H_{0}:\sigma=60,\ H_{1}:\sigma\ \neq\ 60\)
(b) Find the value of the chi-square statistic for the sample. (Round your answer to two decimal places.)
What are the degrees of freedom?
What assumptions are you making about the original distribution?
We assume a binomial population distribution.We assume a exponential population distribution. We assume a normal population distribution.We assume a uniform population distribution.
asked 2020-12-30
Is the gift you purchased for that special someone really appreciated? This was the question investigated in the Journal of Experimental Social Psychology (Vol. 45, 2009). Toe researchers examined the link between engagement ring price (dollars) and level of appreciation of the recipient \(\displaystyle{\left(\text{measured on a 7-point scale where}\ {1}=\ \text{"not at all" and}\ {7}=\ \text{to a great extent"}\right)}.\) Participants for the study were those who used a popular Web site for engaged couples. The Web site's directory was searched for those with "average" American names (e.g., "John Smith," "Sara Jones"). These individuals were then invited to participate in an online survey in exchange for a $10 gift certificate. Of the respondents, those who paid really high or really low prices for the ring were excluded, leaving a sample size of 33 respondents. a) Identify the experimental units for this study. b) What are the variables of interest? Are they quantitative or qualitative in nature? c) Describe the population of interest. d) Do you believe the sample of 33 respondents is representative of the population? Explain. e. In a second, designed study, the researchers investigated whether the link between gift price and level of appreciation was stronger for birthday gift givers than for birthday gift receivers. Toe participants were randomly assigned to play the role of gift-giver or gift-receiver. Assume that the sample consists of 50 individuals. Use a random number generator to randomly assign 25 individuals to play the gift-receiver role and 25 to play the gift-giver role.
asked 2020-12-28
Is statistical inference intuitive to babies? In other words, are babies able to generalize from sample to population? In this study,1 8-month-old infants watched someone draw a sample of five balls from an opaque box. Each sample consisted of four balls of one color (red or white) and one ball of the other color. After observing the sample, the side of the box was lifted so the infants could see all of the balls inside (the population). Some boxes had an “expected” population, with balls in the same color proportions as the sample, while other boxes had an “unexpected” population, with balls in the opposite color proportion from the sample. Babies looked at the unexpected populations for an average of 9.9 seconds (sd = 4.5 seconds) and the expected populations for an average of 7.5 seconds (sd = 4.2 seconds). The sample size in each group was 20, and you may assume the data in each group are reasonably normally distributed. Is this convincing evidence that babies look longer at the unexpected population, suggesting that they make inferences about the population from the sample? Let group 1 and group 2 be the time spent looking at the unexpected and expected populations, respectively. A) Calculate the relevant sample statistic. Enter the exact answer. Sample statistic: _____ B) Calculate the t-statistic. Round your answer to two decimal places. t-statistic = ___________ C) Find the p-value. Round your answer to three decimal places. p-value =
asked 2020-10-23
1. Find each of the requested values for a population with a mean of \(? = 40\), and a standard deviation of \(? = 8\) A. What is the z-score corresponding to \(X = 52?\) B. What is the X value corresponding to \(z = - 0.50?\) C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores? E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\) 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\). 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.
asked 2020-10-23
In the vertical jump, an athlete starts from a crouch andjumps upward to reach as high as possible. Even the best athletesspend little more than 1.00 s in the air (their "hang time"). Treatthe athlete as a particle and let be his maximum height above the floor. Toexplain why he seems to hang in the air, calculate the ratio of thetime he is above /2 moving up to the time it takes him to go from thefloor to that height. You may ignore air resistance.
I think I have to use the formula \(\displaystyle{y}\max={\frac{{{1}}}{{{2}{a}{t}^{{{2}}}}}}\) and solve for t. So PSKt=\sqrt{\frac{2y_{max}}{a}}, and then do it again when it isymax/2. But then I get stuck there.
asked 2021-02-25
Give a full and correct answer Why is it important that a sample be random and representative when conducting hypothesis testing? Representative Sample vs. Random Sample: An Overview Economists and researchers seek to reduce sampling bias to near negligible levels when employing statistical analysis. Three basic characteristics in a sample reduce the chances of sampling bias and allow economists to make more confident inferences about a general population from the results obtained from the sample analysis or study: * Such samples must be representative of the chosen population studied. * They must be randomly chosen, meaning that each member of the larger population has an equal chance of being chosen. * They must be large enough so as not to skew the results. The optimal size of the sample group depends on the precise degree of confidence required for making an inference. Representative sampling and random sampling are two techniques used to help ensure data is free of bias. These sampling techniques are not mutually exclusive and, in fact, they are often used in tandem to reduce the degree of sampling error in an analysis and allow for greater confidence in making statistical inferences from the sample in regard to the larger group. Representative Sample A representative sample is a group or set chosen from a larger statistical population or group of factors or instances that adequately replicates the larger group according to whatever characteristic or quality is under study. A representative sample parallels key variables and characteristics of the large society under examination. Some examples include sex, age, education level, socioeconomic status (SES), or marital status. A larger sample size reduced sampling error and increases the likelihood that the sample accurately reflects the target population. Random Sample A random sample is a group or set chosen from a larger population or group of factors of instances in a random manner that allows for each member of the larger group to have an equal chance of being chosen. A random sample is meant to be an unbiased representation of the larger population. It is considered a fair way to select a sample from a larger population since every member of the population has an equal chance of getting selected. Special Considerations: People collecting samples need to ensure that bias is minimized. Representative sampling is one of the key methods of achieving this because such samples replicate as closely as possible elements of the larger population under study. This alone, however, is not enough to make the sampling bias negligible. Combining the random sampling technique with the representative sampling method reduces bias further because no specific member of the representative population has a greater chance of selection into the sample than any other. Summarize this article in 250 words.
asked 2021-01-22
The Kroger Company is one of the largest grocery retailers in the United States, with over 2000 grocery stores across the country. Kroger uses an online customer opinion questionnaire to obtain performance data about its products and services and learn about what motivates its customers (Kroger website, April 2012). In the survey, Kroger customers were asked if they would be willing to pay more for products that had each of the following four characteristics.
The four questions were: Would you pay more for:
products that have a brand name?
products that are environmentally friendly?
products that are organic?
products that have been recommended by others?
For each question, the customers had the option of responding Yes if they would pay more or No if they would not pay more.
a. Are the data collected by Kroger in this example categorical or quantitative?
asked 2020-11-26
Use either the critical-value approach or the P-value approach to perform the required hypothesis test. For several years, evidence had been mounting that folic acid reduces major birth defects. A. Czeizel and I. Dudas of the National Institute of Hygiene in Budapest directed a study that provided the strongest evidence to date. Their results were published in the paper “Prevention of the First Occurrence of Neural-Tube Defects by Periconceptional Vitamin Supplementation” (New England Journal of Medicine, Vol. 327(26), p. 1832). For the study, the doctors enrolled women prior to conception and divided them randomly into two groups. One group, consisting of 2701 women, took daily multivitamins containing 0.8 mg of folic acid, the other group, consisting of 2052 women, received only trace elements. Major birth defects occurred in 35 cases when the women took folic acid and in 47 cases when the women did not. a. At the 1% significance level, do the data provide sufficient evidence to conclude that women who take folic acid are at lesser risk of having children with major birth defects? b. Is this study a designed experiment or an observational study? Explain your answer. c. In view of your answers to parts (a) and (b), could you reasonably conclude that taking folic acid causes a reduction in major birth defects? Explain your answer.
asked 2021-02-25
Iron is very important for babies' growth. A common belief is that breastfeeding will help the baby to get more iron than formula feeding. To justify the belief, a study followed 2 groups of babies from born to 6 months. With one group babies are breast fed, and the other group are formula fed without iron supplements. Data below shows iron levels of those two groups of babies. \(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}{G}{r}{o}{u}{p}&{S}{a}\mp\le\ {s}{i}{z}{e}&{m}{e}{a}{n}&{S}{\tan{{d}}}{a}{r}{d}\ {d}{e}{v}{i}{a}{t}{i}{o}{n}\backslash{h}{l}\in{e}{B}{r}{e}\ast-{f}{e}{d}&{23}&{13.3}&{1.7}\backslash{h}{l}\in{e}{F}{\quad\text{or}\quad}\mu{l}{a}-{f}{e}{d}&{23}&{12.4}&{1.8}\backslash{h}{l}\in{e}{D}{I}{F}{F}={B}{r}{e}\ast-{F}{\quad\text{or}\quad}\mu{l}{a}&{23}&{0.9}&{1.4}\backslash{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\) (1) There are two groups we need to compare for the study: Breast-Fed and Formula- Fed. Are those two groups dependent or independent? Based on your answer, what inference procedure should we apply for this research? (2) Please perform the inference you decided in (1), and make sure to follow the 5-step procedure for any hypothesis test. (3) Based on your conclusion in (2), what kind of error could you make? Explain the type of error using the context words for this research
...