Question

The data for each grade have the same interquartile range (IQR). Which of the following best compares the two best score distributions? With reference

Data distributions
ANSWERED
asked 2021-02-13
The data for each grade have the same interquartile range (IQR). Which of the following best compares the two best score distributions?
With reference to line plots the data for Sixth grade geography test score is
7 8 8 9 9 9 9 9 10 10 10 11 11 11 12 12 12 14 14 15
The data of seventh grade geography test score is
7 10 10 11 11 11 11 12 12 13 13 13 13 13 14 14 14 15 16 17

Answers (1)

2021-02-14

The median is the middle value of the data distribution. Here there are 20 data points for sixth and seventh grade test scores each. So the median will be the average of \(\displaystyle{10}^{{{t}{h}}}\) and \(\displaystyle{11}^{{{t}{h}}}\) data point when arranged in ascending order.
The median of sixth grade geography test score is calculated as shown below
\(\displaystyle{10}^{{{t}{h}}}\) data point \(=10\)
\(\displaystyle{11}^{{{t}{h}}}\) data point \(=10\)
Median = \(\displaystyle\frac{{{10}+{10}}}{{2}}={10}\)
The median of seventh grade geography test score is calculated as shown below
\(\displaystyle{10}^{{{t}{h}}}\) data point \(=13\)
\(\displaystyle{11}^{{{t}{h}}}\) data point \(=13\)
Median \(= \frac{13+13}{2}=13\)
The IQR is difference between Quartile 3 and Quartile 1.
For sixth grade geography test scores
7 8 8 9 9 9 9 9 10 10 10 11 11 11 12 12 12 14 14 15
The Quartile 1 divide the data distribution in such way that \(25\%\) of data lie less than it and \(75\%\) lie more than it. In a way we can say it is median of first half of data distribution.
Quartile 1 is average of 5th and 6th data points when arranged in ascending order
\(\displaystyle{Q}_{{1}}=\frac{{{9}+{9}}}{{2}}={9}\)
The Quartile 3 divide the data distribution in such way that \(75\%\) of data lie less than it and \(25\%\) lie more than it. In a way we can say it is median of second half of data distribution.
Quartile 3 is average of \(\displaystyle{15}^{{{t}{h}}}\) and \(\displaystyle{16}^{{{t}{h}}}\) data points when arranged in ascending order
\(\displaystyle{Q}_{{1}}=\frac{{{12}+{12}}}{{2}}={12}\)
Inter Quartile Range \(=Q3−Q1=12−9=3\)
For seventh grade geography test scores
7 10 10 11 11 11 11 12 12 13 13 13 13 13 14 14 14 15 16 17
The Quartile 1 divide the data distribution in such way that 25% of data lie less than it and 75% lie more than it. In a way we can say it is median of first half of data distribution.
Quartile 1 is average of \(\displaystyle{5}^{{{t}{h}}}\) and \(\displaystyle{6}^{{{t}{h}}}\) data points when arranged in ascending order
\(\displaystyle{Q}_{{1}}=\frac{{{11}+{11}}}{{2}}={11}\)
The Quartile 3 divide the data distribution in such way that 75% of data lie less than it and 25% lie more than it. In a way we can say it is median of second half of data distribution.
Quartile 3 is average of \(\displaystyle{15}^{{{t}{h}}}\) and \(\displaystyle{16}^{{{t}{h}}}\) data points when arranged in ascending order
\(\displaystyle{Q}_{{1}}=\frac{{{14}+{14}}}{{2}}={14}\)
Inter Quartile Range \(=Q3−Q1=14−11=3\)
Thus the median of Seventh grade is 13 and median of sixth grade is 10, while the Inter quartile range for both of them is 3. So option 3 is correct.
The median score of the seventh grade class is 3 points greater than the median score of the sixth grade class. The difference is the same as the IQR.

0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-02-24
Consider the rates of children (under 18 years of age) living in New York with grandparents as their primary caretakers. A sample of 13 New York counties yielded the following percentages of children under 18 living with grandparents.
5.9, 4.0, 5.7, 5.1, 4.1, 4.4, 6.5, 4.4, 5.8, 5.1, 6.1, 4.5, 4.9
a) Obtain and interpret the quartiles.
b) Determine and interpret the interquartile range.
c) Find and interpret the five-number summary
asked 2020-11-08
The pathogen Phytophthora capsici causes bell pepper plants to wilt and die. A research project was designed to study the effect of soil water content and the spread of the disease in fields of bell peppers. It is thought that too much water helps spread the disease. The fields were divided into rows and quadrants. The soil water content (percent of water by volume of soil) was determined for each plot. An important first step in such a research project is to give a statistical description of the data. Soil Water Content for Bell Pepper Study \begin{matrix} 15 & 14 & 14 & 14 & 13 & 12 & 11 & 11 & 11 & 11 & 10 & 11 & 13 & 16 \\ 9 & 15 & 12 & 9 & 10 & 7 & 14 & 13 & 14 & 8 & 9 & 8 & 11 & 13 \\ 15 & 12 & 9 & 10 & 9 & 9 & 16 & 16 & 12 & 10 & 11 & 11 & 12 & 15 \\ 10 & 10 & 10 & 11 & 9 \end{matrix} If you have a statistical calculator or computer, use it to find the actual sample mean and sample standard deviation.
asked 2021-06-09

The following table represents the Frequency Distribution and Cumulative Distributions for this data set: 12, 13, 17, 18, 18, 24, 26, 27, 27, 30, 30, 35, 37, 41, 42, 43, 44, 46, 53, 58

\(\begin{array}{|c|c|} \hline \text{Class}&\text{Frequency}&\text{Relative Frequency}&\text{Cumulative Frequency}\\ \hline \text{10 but les than 20}&5\\ \hline \text{20 but les than 30}&4\\ \hline \text{30 but les than 40}&4\\ \hline \text{40 but les than 50}&5\\ \hline \text{50 but les than 60}&2\\ \hline \text{TOTAL}\\ \hline \end{array}\)

What is the Relative Frequency for the class: 20 but less than 30? State you answer as a value with exactly two digits after the decimal. for example 0.30 or 0.35

asked 2021-06-11
Table shows the number of wireless service subscribers in the United States and their average monthly bill in the years from 2000 through 2015. \begin{matrix} \text{Year} & \text{Subscribers} & \text{Average Monthly}\ \text{ } & \text{(millions)} & \text{Revenue per Subscriber Unit ($)}\ \text{2000} & \text{109.5} & \text{48.55}\ \text{2001} & \text{128.4} & \text{49.79}\ \text{2002} & \text{140.8} & \text{51.00}\ \text{2003} & \text{158.7} & \text{51.55}\ \text{2004} & \text{182.1} & \text{52.54}\ \text{2005} & \text{207.9} & \text{50.65}\ \text{2006} & \text{233.0} & \text{49.07}\ \text{2007} & \text{255.4} & \text{49.26}\ \text{2008} & \text{270.3} & \text{48.87}\ \text{2009} & \text{285.6} & \text{47.97}\ \text{2010} & \text{296.3} & \text{47.53}\ \text{2011} & \text{316.0} & \text{46.11}\ \text{2012} & \text{326.5} & \text{48.99}\ \text{2013} & \text{335.7} & \text{48.79}\ \text{2014} & \text{355.4} & \text{46.64}\ \text{2015} & \text{377.9} & \text{44.65}\ \end{matrix} One of the scatter plots suggests a linear model. Use the points at t = 0 and t = 15 to find a model in the form y = mx + b.
asked 2021-06-22
A bank wants to know which of two incentive plans will most increase the use of its credit cards. It offers each incentive to a group of current credit card customers, determined at random, and compares the amount charged during the following six months. What type of study design is being used to produce data?
asked 2021-02-24
Find the mean, median, mode, and range for each data set given.
a. 7, 12, 1, 7, 6, 5, 11
b. 85, 105, 95, 90, 115
c. 10, 14, 16, 16, 8, 9, 11, 12, 3
d. 10, 8, 7, 5, 9, 10, 7
e. 45, 50, 40, 35, 75
f. 15, 11, 11, 16, 16, 9
asked 2021-05-14
Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.
\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)
a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)
MPa
State which estimator you used.
\(x\)
\(p?\)
\(\frac{s}{x}\)
\(s\)
\(\tilde{\chi}\)
b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).
MPa
State which estimator you used.
\(s\)
\(x\)
\(p?\)
\(\tilde{\chi}\)
\(\frac{s}{x}\)
c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)
MPa
Interpret this point estimate.
This estimate describes the linearity of the data.
This estimate describes the bias of the data.
This estimate describes the spread of the data.
This estimate describes the center of the data.
Which estimator did you use?
\(\tilde{\chi}\)
\(x\)
\(s\)
\(\frac{s}{x}\)
\(p?\)
d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)
e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)
State which estimator you used.
\(p?\)
\(\tilde{\chi}\)
\(s\)
\(\frac{s}{x}\)
\(x\)
asked 2020-12-25
Case: Dr. Jung’s Diamonds Selection
With Christmas coming, Dr. Jung became interested in buying diamonds for his wife. After perusing the Web, he learned about the “4Cs” of diamonds: cut, color, clarity, and carat. He knew his wife wanted round-cut earrings mounted in white gold settings, so he immediately narrowed his focus to evaluating color, clarity, and carat for that style earring.
After a bit of searching, Dr. Jung located a number of earring sets that he would consider purchasing. But he knew the pricing of diamonds varied considerably. To assist in his decision making, Dr. Jung decided to use regression analysis to develop a model to predict the retail price of different sets of round-cut earrings based on their color, clarity, and carat scores. He assembled the data in the file Diamonds.xls for this purpose. Use this data to answer the following questions for Dr. Jung.
1) Prepare scatter plots showing the relationship between the earring prices (Y) and each of the potential independent variables. What sort of relationship does each plot suggest?
2) Let X1, X2, and X3 represent diamond color, clarity, and carats, respectively. If Dr. Jung wanted to build a linear regression model to estimate earring prices using these variables, which variables would you recommend that he use? Why?
3) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
4) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
5) Dr. Jung now remembers that it sometimes helps to perform a square root transformation on the dependent variable in a regression problem. Modify your spreadsheet to include a new dependent variable that is the square root on the earring prices (use Excel’s SQRT( ) function). If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
1
6) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
7) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must actually square the model’s estimates to convert them to price estimates.) Which sets of earring appears to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
8) Dr. Jung now also remembers that it sometimes helps to include interaction terms in a regression model—where you create a new independent variable as the product of two of the original variables. Modify your spreadsheet to include three new independent variables, X4, X5, and X6, representing interaction terms where: X4 = X1 × X2, X5 = X1 × X3, and X6 = X2 × X3. There are now six potential independent variables. If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
9) Suppose Dr. Jung decides to use color (X1), carats (X3) and the interaction terms X4 (color * clarity) and X5 (color * carats) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
10) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must square the model’s estimates to convert them to actual price estimates.) Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
asked 2021-01-10

Which of the following sequences is NOT arithmetic?
(A) -4, 2, 8, 14, ...,
(B) 9, 4, -1, -6, ...
(C) 2, 4, 8, 16,...
(D)\(\frac{1}{3},\ 1\times\frac{1}{3},\ 2\times\frac{1}{3},\ 3\times\frac{1}{3}\)',...

asked 2020-10-23
1. Find each of the requested values for a population with a mean of \(? = 40\), and a standard deviation of \(? = 8\) A. What is the z-score corresponding to \(X = 52?\) B. What is the X value corresponding to \(z = - 0.50?\) C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores? E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\) 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\). 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.

You might be interested in

...