Question

Solve tan^2x-sin^2x =tan^2xsin^2x

Trigonometric equation and identitie
ANSWERED
asked 2021-03-06
Solve \(\displaystyle{{\tan}^{{2}}{x}}-{{\sin}^{{2}}{x}}={{\tan}^{{2}}{x}}{{\sin}^{{2}}{x}}\)

Answers (1)

2021-03-07

\(x=45\) deg...\(\displaystyle{\tan{{\left({x}\right)}}}={1}\) so \(\displaystyle{{\tan}^{{2}}=}{1}\)
\(\displaystyle{\sin{{\left({45}{d}{e}{g}\right)}}}=\frac{\sqrt{{2}}}{{2}}\)
so \(\displaystyle{{\sin}^{{2}}=}\frac{{2}}{{4}}=\frac{{1}}{{2}}\)
\(\displaystyle{1}-{\left(\frac{{1}}{{2}}\right)}={1}\cdot{\left(\frac{{1}}{{2}}\right)}\)

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-09-06
Verify the identity
\(\displaystyle{\tan{\times}}{{\csc}^{{2}}{x}}–{\tan{{x}}}={\cot{}}\)
asked 2021-09-02
Prove the identity
\(\displaystyle{\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}={{\cos}^{{2}}{x}}{\tan{{x}}}\)
Choose the sequence of steps below that verifies the identity
A) \(\displaystyle{{\cos}^{{2}}{x}}{\tan{{x}}}={{\cos}^{{2}}{x}}{\frac{{{\sin{{x}}}}}{{{\cos{{x}}}}}}={\cos{{x}}}{\sin{{x}}}={\frac{{{\sin{{2}}}{x}}}{{{2}}}}={\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}\)
B) \(\displaystyle{{\cos}^{{2}}{x}}{\tan{{x}}}={{\cos}^{{2}}{x}}{\frac{{{\cos{{x}}}}}{{{\sin{{x}}}}}}={\cos{{x}}}{\sin{{x}}}={\frac{{{\sin{{2}}}{x}}}{{{2}}}}={\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}\)
C) \(\displaystyle{{\cos}^{{2}}{x}}{\tan{{x}}}={{\cos}^{{2}}{x}}{\frac{{{\cos{{x}}}}}{{{\sin{{x}}}}}}={\cos{{x}}}{\sin{{x}}}={2}{\sin{{2}}}{x}={\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}\)
D) \(\displaystyle{{\cos}^{{2}}{x}}{\tan{{x}}}={{\cos}^{{2}}{x}}{\frac{{{\sin{{x}}}}}{{{\cos{{x}}}}}}={\cos{{x}}}{\sin{{x}}}={2}{\sin{{2}}}{x}={\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}\)
asked 2021-06-13
Prove the identity
\(\frac{1}{2\csc 2x}=\cos^2 x \tan x\)
Choose the sequence of steps below that verifies the identity
A) \(\cos^2 x \tan x =\cos^2 x \frac{\sin x}{\cos x}=\cos x \sin x =\frac{\sin 2x}{2}=\frac{1}{2\csc 2x}\)
B) \(\cos^2 x \tan x=\cos^2 x \frac{\cos x}{\sin x}=\cos x \sin x=\frac{\sin 2x}{2}=\frac{1}{2 \csc 2x}\)
C) \(\cos^2 x \tan x=\cos^2 x \frac{\cos x}{\sin x}=\cos x \sin x=2 \sin 2x=\frac{1}{2 \csc 2x}\)
D) \(\cos^2 x \tan x =\cos^2 x \frac{\sin x}{\cos x}=\cos x \sin x=2 \sin 2x=\frac{1}{2 \csc 2x}\)
asked 2021-08-31
Verify that the equation is an identity.
\(\displaystyle{\frac{{{\cos{\theta}}+{1}}}{{{{\tan}^{{2}}\theta}}}}={\frac{{{\cos{\theta}}}}{{{\sec{\theta}}-{1}}}}\)
...