# Solve sqrt(16-x^2) between -4 and 0 Question
Differential equations Solve $$\displaystyle\sqrt{{{16}-{x}^{{2}}}}$$ between -4 and 0 2021-02-11
Definite integral of $$\displaystyle\sqrt{{{16}-{x}^{{2}}}}$$ between -4 and 0
Okay, you are looking at half of a circle.
Diameter is 4. So radius is 2.
You are finding an area, the formula is $$\displaystyle{A}=\pi\cdot{r}^{{2}}$$
$$\displaystyle{A}=\pi{2}^{{2}}={4}\pi$$

### Relevant Questions Give the correct answer and solve the given equation:
$$\displaystyle{x}{y}{\left.{d}{x}\right.}-{\left({y}+{2}\right)}{\left.{d}{y}\right.}={0}$$ Solve the Differential equations $$y'' + 4y = 4 \tan^{2} x$$ Solve the differential equations
(1) $$\displaystyle{x}{y}'-{2}{y}={x}^{{3}}{e}^{{x}}$$
(2) $$\displaystyle{\left({2}{y}{\left.{d}{x}\right.}+{\left.{d}{y}\right.}\right)}{e}^{{2}}{x}={0}$$ Example:$$\displaystyle{\left({X}^{{2}}{D}^{{2}}-{x}{D}-{15}\right)}{y}={0},{y}{\left({1}\right)}={0.1},{y}'{\left({1}\right)}=-{4.5}$$ Make and solve the given equation $$x\ dx\ +\ y\ dy=a^{2}\frac{x\ dy\ -\ y\ dx}{x^{2}\ +\ y^{2}}$$ Use logarithmic differentiation to find
dy/dx y=x sqrt{x^2+48}ZSK $$\displaystyle{\frac{{{\left({d}^{{{2}}}\right)}{y}}}{\rbrace}}{\left\lbrace{d}{\left({t}^{{{2}}}\right\rbrace}+{4}{\left({\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}}+{3}{y}={e}^{{-{t}}}\right.}\right.}$$ Solve the Differential equations $$\displaystyle{\left({D}^{{3}}−{3}{D}+{2}\right)}{y}={0}$$ Solve differential equation: $$\displaystyle{y}'+{y}^{{2}}{\sin{{x}}}={0}$$ $$\displaystyle{4}{x}^{{2}}{y}{''}+{17}{y}={0},{y}{\left({1}\right)}=-{1},{y}'{\left({1}\right)}=-\frac{{1}}{{2}}$$