Prove that sinh(x+y)=sinxcoshy+coshxsinhy

Prove that sinh(x+y)=sinxcoshy+coshxsinhy

Question
Prove that \(\displaystyle{\text{sinh}{{\left({x}+{y}\right)}}}={\sin{{x}}}{\text{cosh}{{y}}}+{\text{cosh}{{x}}}{\text{sinh}{{y}}}\)

Answers (1)

2021-02-28
\(\displaystyle{\text{sinh}{{\left({A}\right)}}}=\frac{{{e}ˣ-{e}⁻ˣ}}{{2}}\) by definition when A=x, so, if A=x+y:
\(\displaystyle{\text{sinh}{{\left({x}+{y}\right)}}}=\frac{{{e}^{{{x}+{y}}}-{\left({e}^{{-{{\left({x}+{y}\right)}}}}\right)}}}{{2}}.\)
\(\displaystyle{\text{cosh}{{\left({x}\right)}}}=\frac{{{e}ˣ+{e}⁻ˣ}}{{2}}\) by definition.
\(\displaystyle{\text{sinh}{{\left({x}\right)}}}{\text{cosh}{{\left({y}\right)}}}={\left({e}^{{x}}-{e}^{{-{{x}}}}\right)}\frac{{{e}^{{y}}+{e}^{{-{{y}}}}}}{{4}}=\frac{{{e}^{{{x}+{y}}}+{e}^{{{x}-{y}}}-{e}^{{{y}-{x}}}-{e}^{{-{{\left({x}+{y}\right)}}}}}}{{4}}.\)
\(\displaystyle{\text{cosh}{{\left({x}\right)}}}{\text{sinh}{{\left({y}\right)}}}={\left({e}^{{x}}+{e}^{{-{{x}}}}\right)}\frac{{{e}^{{y}}-{e}^{{-{{y}}}}}}{{4}}=\frac{{{e}^{{{x}+{y}}}-{e}^{{{x}-{y}}}+{e}^{{{y}-{x}}}-{e}^{{-{{\left({x}+{y}\right)}}}}}}{{4}}.\)
When we add these last two equations we get sinh(x)cosh(y)+cosh(x)sinh(y)=ZSK
\(\displaystyle{2}\frac{{{e}^{{{x}+{y}}}-{e}^{{-{{\left({x}+{y}\right)}}}}}}{{4}}=\frac{{{e}^{{{x}+{y}}}-{e}^{{-{{\left({x}+{y}\right)}}}}}}{{2}}={\text{sinh}{{\left({x}+{y}\right)}}}\)
0

Relevant Questions

asked 2021-01-07
Prove that \(\displaystyle{\sec{{\left(\theta\right)}}}+{\csc{{\left(\theta\right)}}}={\left({\sin{{\left(\theta\right)}}}+{\cos{{\left(\theta\right)}}}\right)}{\left({\tan{{\left(\theta\right)}}}+{\cot{{\left(\theta\right)}}}\right)}\)
asked 2021-02-15
Prove that \(\displaystyle\frac{{{\cos{{A}}}-{\cos{{B}}}}}{{{\sin{{A}}}+{\sin{{B}}}}}=\frac{{{\sin{{B}}}-{\sin{{A}}}}}{{{\cos{{A}}}+{\cos{{B}}}}}\)
asked 2021-02-23
Prove that: \(\displaystyle{1}+\frac{{\cos{{x}}}}{{1}}-{\cos{{x}}}=\frac{{{\tan}^{{2}}{x}}}{{\left({\sec{{x}}}-{1}\right)}^{{2}}}\)
asked 2021-01-27
Prove that
\(\displaystyle{\left({\tan{{x}}}\right)}{\left({\sin{{2}}}{x}\right)}={2}–{2}{{\cos}^{{2}}}\)
asked 2021-03-02
How to prove the following:
\(\displaystyle{{\tan}^{{2}}{x}}+{1}+{\tan{{x}}}{\sec{{x}}}={1}+\frac{{\sin{{x}}}}{{{\cos}^{{2}}{x}}}\)
asked 2020-12-29
Prove the identity. \(\displaystyle\frac{{{\tan}^{{2}}{x}}}{{\sec{{x}}}}={\sec{{x}}}-{\cos{{x}}}\)
asked 2021-01-28
Prove \(\displaystyle\frac{{{\left({\csc{{x}}}-{\cot{{x}}}\right)}{\left({\csc{{x}}}+{\cot{{x}}}\right)}}}{{\sec{{x}}}}={\cos{{x}}}\)
asked 2020-11-09
Prove \(\frac{\cos(a)}{1+\sin(a)}+(1+\sin)\)
asked 2020-11-08
\(\displaystyle{\cos{{x}}}{\left({e}^{{{2}{y}}}-{y}\right)}{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={e}^{{y}}{\sin{{2}}}{x},{y}{\left({0}\right)}={0}\)
asked 2020-10-18
If \(\displaystyle{\sin{{x}}}+{\sin{{y}}}={a}{\quad\text{and}\quad}{\cos{{x}}}+{\cos{{y}}}={b}\) then find \(\displaystyle{\tan{{\left({x}-\frac{{y}}{{2}}\right)}}}\)
...