Prove that (cosA - cosB) / (sinA + sinB) = ( sinB - sinA ) / ( cosA + cosB )

Question
Prove that \(\displaystyle\frac{{{\cos{{A}}}-{\cos{{B}}}}}{{{\sin{{A}}}+{\sin{{B}}}}}=\frac{{{\sin{{B}}}-{\sin{{A}}}}}{{{\cos{{A}}}+{\cos{{B}}}}}\)

Answers (1)

2021-02-16
Cross-multiply:
\(\displaystyle{{\cos}^{{2}}{A}}-{{\cos}^{{2}}{B}}={{\sin}^{{2}}{B}}-{{\sin}^{{2}}{A}}={1}-{{\cos}^{{2}}{B}}-{\left({1}-{{\cos}^{{2}}{A}}\right)}={{\cos}^{{2}}{A}}-{{\cos}^{{2}}{B}}\),
which is an identity, proving the original equivalence.
0

Relevant Questions

asked 2021-02-21
\(\displaystyle{\left({\cos{{A}}}\right)}{\left({\csc{{A}}}\right)}={\cot{{A}}}\)
asked 2021-01-30
a+b+c=180° prove that \(\displaystyle{\cos{{a}}}+{\cos{{b}}}+{\cos{{c}}}\)
asked 2021-01-07
Prove that \(\displaystyle{\sec{{\left(\theta\right)}}}+{\csc{{\left(\theta\right)}}}={\left({\sin{{\left(\theta\right)}}}+{\cos{{\left(\theta\right)}}}\right)}{\left({\tan{{\left(\theta\right)}}}+{\cot{{\left(\theta\right)}}}\right)}\)
asked 2021-02-27
Prove that \(\displaystyle{\text{sinh}{{\left({x}+{y}\right)}}}={\sin{{x}}}{\text{cosh}{{y}}}+{\text{cosh}{{x}}}{\text{sinh}{{y}}}\)
asked 2021-02-23
Prove that: \(\displaystyle{1}+\frac{{\cos{{x}}}}{{1}}-{\cos{{x}}}=\frac{{{\tan}^{{2}}{x}}}{{\left({\sec{{x}}}-{1}\right)}^{{2}}}\)
asked 2021-01-27
Prove that
\(\displaystyle{\left({\tan{{x}}}\right)}{\left({\sin{{2}}}{x}\right)}={2}–{2}{{\cos}^{{2}}}\)
asked 2020-12-29
Prove the identity. \(\displaystyle\frac{{{\tan}^{{2}}{x}}}{{\sec{{x}}}}={\sec{{x}}}-{\cos{{x}}}\)
asked 2021-01-28
Prove \(\displaystyle\frac{{{\left({\csc{{x}}}-{\cot{{x}}}\right)}{\left({\csc{{x}}}+{\cot{{x}}}\right)}}}{{\sec{{x}}}}={\cos{{x}}}\)
asked 2021-03-02
How to prove the following:
\(\displaystyle{{\tan}^{{2}}{x}}+{1}+{\tan{{x}}}{\sec{{x}}}={1}+\frac{{\sin{{x}}}}{{{\cos}^{{2}}{x}}}\)
asked 2020-11-09
Prove \(\frac{\cos(a)}{1+\sin(a)}+(1+\sin)\)
...