Question

Prove that (cosA - cosB) / (sinA + sinB) = ( sinB - sinA ) / ( cosA + cosB )

Trigonometric equation and identitie
ANSWERED
asked 2021-02-15
Prove that \(\displaystyle\frac{{{\cos{{A}}}-{\cos{{B}}}}}{{{\sin{{A}}}+{\sin{{B}}}}}=\frac{{{\sin{{B}}}-{\sin{{A}}}}}{{{\cos{{A}}}+{\cos{{B}}}}}\)

Answers (1)

2021-02-16
Cross-multiply:
\(\displaystyle{{\cos}^{{2}}{A}}-{{\cos}^{{2}}{B}}={{\sin}^{{2}}{B}}-{{\sin}^{{2}}{A}}={1}-{{\cos}^{{2}}{B}}-{\left({1}-{{\cos}^{{2}}{A}}\right)}={{\cos}^{{2}}{A}}-{{\cos}^{{2}}{B}}\),
which is an identity, proving the original equivalence.
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-01-30

\(a+b+c=180^{\circ}\) prove that \(\displaystyle{\cos{{a}}}+{\cos{{b}}}+{\cos{{c}}}\)

asked 2021-09-14
Prove that
\(\displaystyle{{\sin}^{{2}}{\left({\frac{{\pi}}{{{8}}}}+{\frac{{{x}}}{{{2}}}}\right)}}-{{\sin}^{{2}}{\left({\frac{{\pi}}{{{8}}}}-{\frac{{{x}}}{{{2}}}}\right)}}={\frac{{{1}}}{{\sqrt{{{2}}}}}}{\sin{{x}}}\)
asked 2021-09-01
Prove that of the two trigonometric equations.
\(\displaystyle{\tan{{\left({A}+{B}\right)}}}={\frac{{{\tan{{A}}}+{\tan{{B}}}}}{{{1}-{\tan{{A}}}{\tan{{B}}}}}}\)
\(\displaystyle{\sin{{2}}}\theta={2}{\sin{\theta}}{\cos{\theta}}\)
asked 2021-09-02
Prove the identity
\(\displaystyle{\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}={{\cos}^{{2}}{x}}{\tan{{x}}}\)
Choose the sequence of steps below that verifies the identity
A) \(\displaystyle{{\cos}^{{2}}{x}}{\tan{{x}}}={{\cos}^{{2}}{x}}{\frac{{{\sin{{x}}}}}{{{\cos{{x}}}}}}={\cos{{x}}}{\sin{{x}}}={\frac{{{\sin{{2}}}{x}}}{{{2}}}}={\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}\)
B) \(\displaystyle{{\cos}^{{2}}{x}}{\tan{{x}}}={{\cos}^{{2}}{x}}{\frac{{{\cos{{x}}}}}{{{\sin{{x}}}}}}={\cos{{x}}}{\sin{{x}}}={\frac{{{\sin{{2}}}{x}}}{{{2}}}}={\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}\)
C) \(\displaystyle{{\cos}^{{2}}{x}}{\tan{{x}}}={{\cos}^{{2}}{x}}{\frac{{{\cos{{x}}}}}{{{\sin{{x}}}}}}={\cos{{x}}}{\sin{{x}}}={2}{\sin{{2}}}{x}={\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}\)
D) \(\displaystyle{{\cos}^{{2}}{x}}{\tan{{x}}}={{\cos}^{{2}}{x}}{\frac{{{\sin{{x}}}}}{{{\cos{{x}}}}}}={\cos{{x}}}{\sin{{x}}}={2}{\sin{{2}}}{x}={\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}\)
...