The limit as x approaches zero of (sinx - xcosx)/x^3

Question
Limits and continuity
asked 2021-03-04
The limit as x approaches zero of \(\displaystyle\frac{{{\sin{{x}}}-{x}{\cos{{x}}}}}{{x}^{{3}}}\)

Answers (1)

2021-03-05
Let \(\displaystyle{f{{\left({x}\right)}}}=\frac{{g{{\left({x}\right)}}}}{{h}}{\left({x}\right)},{w}{h}{e}{r}{e}{g{{\left({x}\right)}}}={\sin{{x}}}-{x}.{\cos{{x}}},{\quad\text{and}\quad}{h}{\left({x}\right)}={x}^{{3}}.\)
The limit is \(\displaystyle{x}\to{0}.\)
Since g(0) and h(0) both = 0,then use l'Hopital's rule, \(\displaystyle\lim{f{{\left({x}\right)}}}{\left[{x}\to{0}\right]}=\Lim{\left[{x}\to{0}\right]}{g}'\frac{{{x}}}{{h}}'{\left({x}\right)}\)
\(\displaystyle{g}'{\left({x}\right)}={\cos{{x}}}-{\cos{{x}}}+{x}.{\sin{{x}}}={x}.{\sin{{x}}}\)
\(\displaystyle{h}'{\left({x}\right)}={3}{x}^{{2}}\)
Since g'(0) and h'(0) both = 0,then again use l'Hopital's rule, i.e. \(\displaystyle\lim{f{{\left({x}\right)}}}{\left[{x}\to{0}\right]}=\Lim{\left[{x}\to{0}\right]}{g}{''}\frac{{{x}}}{{h}}{''}{\left({x}\right)}\)
\(\displaystyle{g}{''}{\left({x}\right)}={\sin{{x}}}+{x}.{\cos{{x}}}\)
\(\displaystyle{h}{''}{\left({x}\right)}={6}{x}\)
Since g''(0) and h''(0) both = 0,then again use l'Hopital's rule, i.e. \(\displaystyle\lim{f{{\left({x}\right)}}}{\left[{x}\to{0}\right]}=\Lim{\left[{x}\to{0}\right]}{g}{'''}\frac{{{x}}}{{h}}{'''}{\left({x}\right)}\)
\(\displaystyle{g}{'''}{\left({x}\right)}={\cos{{x}}}+{\cos{{x}}}-{x}.{\sin{{x}}}={2}{\cos{{x}}}-{x}.{\sin{{x}}}\)
\(\displaystyle{h}{'''}{\left({x}\right)}={6}\)
Now, g''(0) = 2, and h'''(0) = 6.
So, \(\displaystyle\lim{f{{\left({x}\right)}}}{\left[{x}\to{0}\right]}=\Lim{\left[{x}\to{0}\right]}{g}{'''}\frac{{{x}}}{{h}}{'''}{\left({x}\right)}=\Lim{\left[{x}\to{0}\right]}\frac{{2}}{{6}}=\frac{{1}}{{3}}\)
0

Relevant Questions

asked 2020-12-24
Find solution \(\displaystyle\lim_{{{x}\to{0}}}\frac{{{\tan{{x}}}-{\sin{{x}}}}}{{x}^{{3}}}\)
asked 2021-03-09
Find each of the following limits. If the limit is not finite, indicate or for one- or two-sided limits, as appropriate.
\(\lim_{x\rightarrow\infty}\frac{4x^3-2x-1}{x^2-1}\)
asked 2020-10-27
Use the conjugate process \(\displaystyle\lim_{{{x}\to{0}}}\frac{{\sqrt{{{x}^{{2}}+{5}}}-\sqrt{{{5}-{x}^{{2}}}}}}{{x}}.\)
asked 2021-02-03
A piecewise function is given. Use properties of limits to find the shown indicated limit, or state that the limit does not exist. \(f(x)=\begin{cases}\sqrt[3]{x^2+7}&\text{if}&x<1\\4x&\text{if}&x\geq1\end{cases}\)
\(\lim_{x\rightarrow1} f(x)\)
asked 2021-01-04
Find the limit and discuss the continuity of the function. \(\lim_{(x,y)\rightarrow(3,1)}(x^2-2y)\)
asked 2021-01-16
Find each of the following limits. If the limit is not finite, indicate or for one- or two-sided limits, as appropriate.
\(\lim_{t\rightarrow0}\frac{5t^2}{\cos t-1}\)
asked 2021-02-25
Find the limit
\(\lim_{x\rightarrow-\infty}\frac{x^2-4x+8}{3x^3}\)
asked 2021-02-21
Find the following limit:
\(\lim_{(x,y)\rightarrow(3,3)}(\frac{x-y}{\sqrt x-\sqrt y})\)
asked 2021-02-12
Find the following limit.
\(\lim_{x\rightarrow+\infty}(\frac{3-12x}{3x+5}+\csc\frac{\pi x+\pi}{4x})\)
asked 2021-01-02
Find the limit:
\(\lim_{x\rightarrow\infty}\frac{3x^6-x^4+2x^2-3}{4x^5+2x^3-5}\)
...