if cos 45=1/sqrt2, find cos 315, sin 270, sin 210, tan 210

if cos 45=1/sqrt2, find cos 315, sin 270, sin 210, tan 210

Question
if \(\displaystyle{\cos{{45}}}=\frac{{1}}{\sqrt{{2}}}\), find \(\displaystyle{\cos{{315}}},{\sin{{270}}},{\sin{{210}}},{\tan{{210}}}\)

Answers (1)

2021-01-26
\(\displaystyle{\cos{{45}}}=\frac{{1}}{\sqrt{{2}}},{\sin{{45}}}=\sqrt{{{1}-{{\cos}^{{2}}{\left({45}\right)}}}}=\sqrt{{{1}-\frac{{1}}{{2}}}}=\sqrt{{\frac{{1}}{{2}}}}=\frac{{1}}{\sqrt{{2}}}={\cos{{45}}},\)
\(\displaystyle{\sin{{90}}}={\sin{{\left({2}\cdot{45}\right)}}}={2}{\sin{{45}}}{\cos{{45}}}={2}\cdot\frac{{1}}{\sqrt{{2}}}\cdot\frac{{1}}{\sqrt{{2}}}={1},{\cos{{90}}}={\cos{{\left({2}\cdot{45}\right)}}}={\cos{{45}}}{\cos{{45}}}-{\sin{{45}}}{\sin{{45}}}=\frac{{1}}{{2}}-\frac{{1}}{{2}}={0},\)
\(\displaystyle{\sin{{180}}}={\sin{{\left({2}\cdot{90}\right)}}}={2}{\sin{{90}}}{\cos{{90}}}={0},{\cos{{180}}}={\cos{{\left({2}\cdot{90}\right)}}}={\cos{{90}}}{\cos{{90}}}-{\sin{{90}}}{\sin{{90}}}={0}-{1}=-{1},\)
\(\displaystyle{\cos{{\left({X}\right)}}}={\cos{{\left(-{X}\right)}}},{s}{o}{\cos{{45}}}={\cos{{\left(-{45}\right)}}}={\cos{{\left({360}-{45}\right)}}}={\cos{{\left({315}\right)}}}={1}\sqrt{{2}}.\)
\(\displaystyle{\sin{{270}}}={\sin{{\left({180}+{90}\right)}}}={\sin{{180}}}{\cos{{90}}}+{\cos{{180}}}{\sin{{90}}}={0}-{1}=-{1}.\)
\(\displaystyle{\sin{{3}}}{X}={\sin{{\left({2}{X}+{X}\right)}}}={\sin{{2}}}{X}{\cos{{X}}}+{\cos{{2}}}{X}{\sin{{X}}}={2}{\sin{{X}}}{{\cos}^{{2}}{\left({X}\right)}}+{{\cos}^{{2}}{\left({X}\right)}}{\sin{{\left({X}\right)}}}-{{\sin}^{{3}}{\left({X}\right)}},{s}{o}{\quad\text{if}\quad}{3}{X}={90}:\)
\(\displaystyle{1}={2}{\sin{{30}}}{\left({1}-{{\sin}^{{2}}{\left({30}\right)}}\right)}+{\left({1}-{{\sin}^{{2}}{\left({30}\right)}}\right)}{\sin{{\left({30}\right)}}}-{{\sin}^{{3}}{\left({30}\right)}}={2}{\sin{{30}}}-{2}{{\sin}^{{3}}{\left({30}\right)}}+{\sin{{\left({30}\right)}}}-{{\sin}^{{3}}{\left({30}\right)}}-{{\sin}^{{3}}{\left({30}\right)}}=\)
\(\displaystyle{3}{\sin{{30}}}-{4}{{\sin}^{{{30}}},}{s}{o}{4}{{\sin}^{{3}}{\left({30}\right)}}-{3}{\sin{{30}}}+{1}={0}={\left({2}{\sin{{30}}}-{1}\right)}^{{2}}{\left({\sin{{30}}}+{1}\right)},{s}{o}{\sin{{30}}}=\frac{{1}}{{2}}{\quad\text{or}\quad}-{1},{b}{u}{t}{\sin{{270}}}=-{1}{s}{o}{\sin{{30}}}=\frac{{1}}{{2}}.\)
\(\displaystyle{\cos{{30}}}=\sqrt{{{1}-{{\sin}^{{2}}{\left({30}\right)}}}}=\sqrt{{\frac{{3}}{{4}}}}=\frac{\sqrt{{3}}}{{2}}.{\left({3}\cdot{270}={810}={2}\cdot{360}+{90},{\sin{{810}}}={\sin{{90}}}={1},\right.}\) hence the -1 solution of the cubic.)
\(\displaystyle{\sin{{210}}}={\sin{{\left({180}+{30}\right)}}}={\sin{{180}}}{\cos{{30}}}+{\cos{{180}}}{\sin{{30}}}={0}-\frac{{1}}{{2}}=-\frac{{1}}{{2}}.\)
\(\displaystyle{\cos{{210}}}={\cos{{\left({180}+{30}\right)}}}={\cos{{180}}}{\cos{{30}}}-{\sin{{180}}}{\sin{{30}}}=-\frac{\sqrt{{3}}}{{2}},{\tan{{210}}}=\frac{{\sin{{210}}}}{{\cos{{210}}}}=\frac{{-\frac{{1}}{{2}}}}{{-{\sqrt{{3}}}}}/{2}{)}=\frac{{1}}{\sqrt{{3}}}.\)
0

Relevant Questions

asked 2021-03-02
How to prove the following:
\(\displaystyle{{\tan}^{{2}}{x}}+{1}+{\tan{{x}}}{\sec{{x}}}={1}+\frac{{\sin{{x}}}}{{{\cos}^{{2}}{x}}}\)
asked 2020-11-12
Solve \(\displaystyle{\sec{{\left({30}\right)}}}+{\tan{{\left({45}\right)}}}-\frac{{\csc{{\left({60}\right)}}}}{{\sec{{\left({30}\right)}}}}+{\cos{{\left({60}\right)}}}+{\cot{{\left({45}\right)}}}\)
asked 2021-01-07
Prove that \(\displaystyle{\sec{{\left(\theta\right)}}}+{\csc{{\left(\theta\right)}}}={\left({\sin{{\left(\theta\right)}}}+{\cos{{\left(\theta\right)}}}\right)}{\left({\tan{{\left(\theta\right)}}}+{\cot{{\left(\theta\right)}}}\right)}\)
asked 2020-12-24
Solve \(\displaystyle{\cos{{30}}}\cdot\frac{{\sin{{\left(-{50}\right)}}}}{{\tan{{70}}}}\)
asked 2020-11-12
Solve the equation \(\frac{{{3}{a}{{\sin}^{2}{\left(\theta\right)}} \cos{{\left(\theta\right)}}}}{{{3}{a}{{\cos}^{2}{\left(\theta\right)}} \sin{{\left(\theta\right)}}}}= \tan{{\left(\theta\right)}}\)
asked 2020-11-12
Solve the equation \(\frac{(2\sin \theta \sin 2\theta)}{\cos \theta+\cos 3\theta}=\tan (\theta) \tan(2\theta)\)
asked 2021-02-15
[Triangle]
Find sin 1),sin #,cos 1), and cos &. Write each answer as a fraction in simplest form.
asked 2020-10-28
Solve the equation \(\frac{1-\sin x}{1+\sin x}=(\sec x-\tan x)^{2}\)
asked 2020-11-12
If \(\displaystyle{\cot{{\left(\theta\right)}}}={7}\), what is \(\displaystyle{\sin{{\left(\theta\right)}}},{\cos{{\left(\theta\right)}}},{\sec{{\left(\theta\right)}}}\) between 0 and \(\displaystyle{2}\pi\)?
asked 2021-02-25
Find every angle theta with \(\displaystyle{0}\le\theta\le{2}\pi{r}{a}{d}{i}{a}{n}{s},{\quad\text{and}\quad}{2}{{\sin}^{{2}}{\left(\theta\right)}}+{\cos{{\left(\theta\right)}}}={2}\)
...