Question

if cos 45=1/sqrt2, find cos 315, sin 270, sin 210, tan 210

Trigonometric equation and identitie
ANSWERED
asked 2021-01-25
if \(\displaystyle{\cos{{45}}}=\frac{{1}}{\sqrt{{2}}}\), find \(\displaystyle{\cos{{315}}},{\sin{{270}}},{\sin{{210}}},{\tan{{210}}}\)

Answers (1)

2021-01-26

\(\displaystyle{\cos{{45}}}=\frac{{1}}{\sqrt{{2}}},{\sin{{45}}}=\sqrt{{{1}-{{\cos}^{{2}}{\left({45}\right)}}}}=\sqrt{{{1}-\frac{{1}}{{2}}}}=\sqrt{{\frac{{1}}{{2}}}}=\frac{{1}}{\sqrt{{2}}}={\cos{{45}}},\)
\(\displaystyle{\sin{{90}}}={\sin{{\left({2}\cdot{45}\right)}}}={2}{\sin{{45}}}{\cos{{45}}}={2}\cdot\frac{{1}}{\sqrt{{2}}}\cdot\frac{{1}}{\sqrt{{2}}}={1},{\cos{{90}}}={\cos{{\left({2}\cdot{45}\right)}}}={\cos{{45}}}{\cos{{45}}}-{\sin{{45}}}{\sin{{45}}}=\frac{{1}}{{2}}-\frac{{1}}{{2}}={0},\)
\(\displaystyle{\sin{{180}}}={\sin{{\left({2}\cdot{90}\right)}}}={2}{\sin{{90}}}{\cos{{90}}}={0},{\cos{{180}}}={\cos{{\left({2}\cdot{90}\right)}}}={\cos{{90}}}{\cos{{90}}}-{\sin{{90}}}{\sin{{90}}}={0}-{1}=-{1},\)
\(\displaystyle{\cos{{\left({X}\right)}}}={\cos{{\left(-{X}\right)}}},\text{so }{\cos{{45}}}={\cos{{\left(-{45}\right)}}}={\cos{{\left({360}-{45}\right)}}}={\cos{{\left({315}\right)}}}={1}\sqrt{{2}}.\)
\(\displaystyle{\sin{{270}}}={\sin{{\left({180}+{90}\right)}}}={\sin{{180}}}{\cos{{90}}}+{\cos{{180}}}{\sin{{90}}}={0}-{1}=-{1}.\)
\(\displaystyle{\sin{{3}}}{X}={\sin{{\left({2}{X}+{X}\right)}}}={\sin{{2}}}{X}{\cos{{X}}}+{\cos{{2}}}{X}{\sin{{X}}}={2}{\sin{{X}}}{{\cos}^{{2}}{\left({X}\right)}}+{{\cos}^{{2}}{\left({X}\right)}}{\sin{{\left({X}\right)}}}-{{\sin}^{{3}}{\left({X}\right)}},{s}{o}{\quad\text{if}\quad}{3}{X}={90}:\)
\(\displaystyle{1}={2}{\sin{{30}}}{\left({1}-{{\sin}^{{2}}{\left({30}\right)}}\right)}+{\left({1}-{{\sin}^{{2}}{\left({30}\right)}}\right)}{\sin{{\left({30}\right)}}}-{{\sin}^{{3}}{\left({30}\right)}}={2}{\sin{{30}}}-{2}{{\sin}^{{3}}{\left({30}\right)}}+{\sin{{\left({30}\right)}}}-{{\sin}^{{3}}{\left({30}\right)}}-{{\sin}^{{3}}{\left({30}\right)}}=\)
\(\displaystyle{3}{\sin{{30}}}-{4}{{\sin}^{{{30}}},}{s}{o}{4}{{\sin}^{{3}}{\left({30}\right)}}-{3}{\sin{{30}}}+{1}={0}={\left({2}{\sin{{30}}}-{1}\right)}^{{2}}{\left({\sin{{30}}}+{1}\right)},{s}{o}{\sin{{30}}}=\frac{{1}}{{2}}{\quad\text{or}\quad}-{1},{b}{u}{t}{\sin{{270}}}=-{1}{s}{o}{\sin{{30}}}=\frac{{1}}{{2}}.\)
\(\displaystyle{\cos{{30}}}=\sqrt{{{1}-{{\sin}^{{2}}{\left({30}\right)}}}}=\sqrt{{\frac{{3}}{{4}}}}=\frac{\sqrt{{3}}}{{2}}.{\left({3}\cdot{270}={810}={2}\cdot{360}+{90},{\sin{{810}}}={\sin{{90}}}={1},\right.}\) hence the -1 solution of the cubic.)
\(\displaystyle{\sin{{210}}}={\sin{{\left({180}+{30}\right)}}}={\sin{{180}}}{\cos{{30}}}+{\cos{{180}}}{\sin{{30}}}={0}-\frac{{1}}{{2}}=-\frac{{1}}{{2}}.\)
\(\displaystyle{\cos{{210}}}={\cos{{\left({180}+{30}\right)}}}={\cos{{180}}}{\cos{{30}}}-{\sin{{180}}}{\sin{{30}}}=-\frac{\sqrt{{3}}}{{2}},{\tan{{210}}}=\frac{{\sin{{210}}}}{{\cos{{210}}}}=\frac{{-\frac{{1}}{{2}}}}{{-{\sqrt{{3}}}}}/{2}{)}=\frac{{1}}{\sqrt{{3}}}.\)

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-08-31
Verify that the equation is an identity.
\(\displaystyle{\frac{{{\cos{\theta}}+{1}}}{{{{\tan}^{{2}}\theta}}}}={\frac{{{\cos{\theta}}}}{{{\sec{\theta}}-{1}}}}\)
asked 2021-09-12
Verify the identify.
\(\displaystyle{\frac{{{{\tan}^{{2}}\theta}}}{{{\sec{\theta}}+{1}}}}={\frac{{{1}-{\cos{{x}}}}}{{{\cos{{x}}}}}}\)
asked 2021-09-12
Proof trigonometric identities.
\(\displaystyle{\sec{{\left({x}\right)}}}+{\tan{{\left({x}\right)}}}={\frac{{{\cos{{\left({x}\right)}}}}}{{{1}-{\sin{{\left({x}\right)}}}}}}\)
asked 2021-09-02
Prove the identity
\(\displaystyle{\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}={{\cos}^{{2}}{x}}{\tan{{x}}}\)
Choose the sequence of steps below that verifies the identity
A) \(\displaystyle{{\cos}^{{2}}{x}}{\tan{{x}}}={{\cos}^{{2}}{x}}{\frac{{{\sin{{x}}}}}{{{\cos{{x}}}}}}={\cos{{x}}}{\sin{{x}}}={\frac{{{\sin{{2}}}{x}}}{{{2}}}}={\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}\)
B) \(\displaystyle{{\cos}^{{2}}{x}}{\tan{{x}}}={{\cos}^{{2}}{x}}{\frac{{{\cos{{x}}}}}{{{\sin{{x}}}}}}={\cos{{x}}}{\sin{{x}}}={\frac{{{\sin{{2}}}{x}}}{{{2}}}}={\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}\)
C) \(\displaystyle{{\cos}^{{2}}{x}}{\tan{{x}}}={{\cos}^{{2}}{x}}{\frac{{{\cos{{x}}}}}{{{\sin{{x}}}}}}={\cos{{x}}}{\sin{{x}}}={2}{\sin{{2}}}{x}={\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}\)
D) \(\displaystyle{{\cos}^{{2}}{x}}{\tan{{x}}}={{\cos}^{{2}}{x}}{\frac{{{\sin{{x}}}}}{{{\cos{{x}}}}}}={\cos{{x}}}{\sin{{x}}}={2}{\sin{{2}}}{x}={\frac{{{1}}}{{{2}{\csc{{2}}}{x}}}}\)
...