Ask question

# Find log5(0.0016) # Find log5(0.0016)

Question
Logarithms asked 2021-03-08
Find $$\displaystyle{\log{{5}}}{\left({0.0016}\right)}$$

## Answers (1) 2021-03-09
$$\displaystyle{0.0016}=\frac{{16}}{{10}},{000}=\frac{{1}}{{625}}=\frac{{1}}{{54}}={5}-{4}$$
So $$\displaystyle{\log{{5}}}{\left({0.0016}\right)}=-{4}$$

### Relevant Questions asked 2020-11-27
$$\displaystyle{\log{{5}}}\cdot{5}^{{4}}$$ asked 2021-01-15
Solve the equation and find the exact solution:
$$\displaystyle{\log{{b}}}{a}{s}{e}{2}{\left({\log{{b}}}{a}{s}{e}{3}{\left({\log{{b}}}{a}{s}{e}{4}{\left({x}\right)}\right)}\right)}={0}$$ asked 2021-01-02
Solve for x. $$\displaystyle{\log{{7}}}{\left({x}+{6}\right)}={0}$$ asked 2021-01-16
Write in exponential form.
$$\displaystyle{\log{{3}}}{1}={0}$$ asked 2021-02-16
How to solve $$\displaystyle{\log{{50}}}+{\log{{\left(\frac{{x}}{{2}}\right)}}}={0}$$ asked 2021-02-02
Solve: $$\displaystyle{\log{{6}}}{x}={0.5}{\log{{6}}}{36}$$ asked 2021-01-25
Solve for x using $$\log50=600e^{-0.4x}$$ asked 2021-01-31
Find the solution $$\displaystyle{\log{{\left({6}{x}+{10}\right)}}}=\frac{{\log{{\left({x}\right)}}}}{{\log{{\left(\frac{{1}}{{2}}\right)}}}}$$ asked 2021-03-02
Find answer using log properties $$\displaystyle{10}\cdot{\log{{24}}}-{\log{{3}}}$$ asked 2020-11-23
If $$log 3 = A and log 7 = B$$, find
$$log_7 9$$
in terms of A and B.
...