Solve tan x + sec 2x = 1

Solve tan x + sec 2x = 1

Question
Solve \(\displaystyle{\tan{{x}}}+{\sec{{2}}}{x}={1}\)

Answers (1)

2020-11-25
When \(\displaystyle{x}={0}:{\tan{{\left({0}\right)}}}+{\sec{{\left({2}\cdot{0}\right)}}}={1}\) so x=0 is a solution, because \(\displaystyle{\tan{{\left({0}\right)}}}={0}{\quad\text{and}\quad}{\cos{{\left({0}\right)}}}{\quad\text{and}\quad}{\sec{{\left({0}\right)}}}={1}.\)
There is another solution at x=67.5 degrees. See below: If \(\displaystyle{y}={\sin{{\left({x}\right)}}}{t}{h}{e}{n}{w}{e}{c}{a}{n}{w}{\quad\text{or}\quad}{k}{o}{u}{t}{P}{S}{K}{\tan{{\left({x}\right)}}}.{P}{S}{K}{\cos{{\left({2}{x}\right)}}}={1}-{2}{{\sin}^{{2}}{\left({x}\right)}}={1}-{2}{y}^{{2}},{\sec{{\left({2}{x}\right)}}}=\frac{{1}}{{{1}-{2}{{\sin}^{{2}}{\left({x}\right)}}}},{\cos{{\left({x}\right)}}}=\sqrt{{{1}-{y}^{{2}}}}.{\sin{=}}{o}{p}\frac{{p}}{{h}}{y}{p}=\frac{{y}}{{1}}{s}{o}{a}{d}{j}=\sqrt{{{1}-{y}^{{2}}}}.{\tan{{\left({x}\right)}}}={o}{p}\frac{{p}}{{a}}{d}{j}=\frac{{y}}{\sqrt{{{1}-{y}^{{2}}}}}\).
Therefore, \(\displaystyle{\tan{{\left({x}\right)}}}+{\sec{{\left({2}{x}\right)}}}=\frac{{y}}{\sqrt{{{1}-{y}^{{2}}}}}+\frac{{1}}{{{1}-{2}{y}^{{2}}}}={1}.\)
\(\displaystyle\frac{{y}}{\sqrt{{{1}-{y}^{{2}}}}}={1}-\frac{{1}}{{{1}-{2}{y}^{{2}}}}=\frac{{{1}-{2}{y}^{{2}}-{1}}}{{{1}-{2}{y}^{{2}}}}=-{2}\frac{{y}^{{2}}}{{{1}-{2}{y}^{{2}}}}.\)
y=0 is a solution \(\displaystyle{\left({\sin{{\left({x}\right)}}}={0}{s}{o}{x}={0}\right)}\)and:
\(\displaystyle\frac{{1}}{\sqrt{{{1}-{y}^{{2}}}}}=-{2}\frac{{y}}{{{1}-{2}{y}^{{2}}}},\)
\(\displaystyle\sqrt{{{1}-{y}^{{2}}}}=\frac{{{2}{y}^{{2}}-{1}}}{{2}}{y}.\)
Squaring: \(\displaystyle{1}-{y}^{{2}}=\frac{{{4}{y}^{{4}}-{4}{y}^{{2}}+{1}}}{{4}}{y}^{{2}},{4}{y}^{{2}}-{4}{y}^{{4}}={4}{y}^{{4}}-{4}{y}^{{2}}+{1},{8}{y}^{{4}}-{8}{y}^{{2}}+{1}={0}.\)
So \(\displaystyle{y}^{{2}}={\left({8}\pm\frac{\sqrt{{{64}-{32}}}}{{16}}=\frac{{1}}{{2}}\pm\frac{\sqrt{{2}}}{{4}}={0.8536}{\quad\text{or}\quad}{0.1464}\right.}\) approx and y=0.9239 or \(\displaystyle{0.3827}={\sin{{\left({x}\right)}}}.\)
Therefore \(\displaystyle{x}=\pm{67.5}º,{x}=\pm{22.5}º\), but we may have to eliminate "solutions" that don't fit the original equation.
These are the solutions that do fit: 67.5, -22.5 and of course 0. The periodic nature of the trig functions gives us a series: 0, 67.5, -22.5, 157.5, 180, 247.5, 337.5, etc.
0

Relevant Questions

asked 2020-10-28
Solve the equation \(\frac{1-\sin x}{1+\sin x}=(\sec x-\tan x)^{2}\)
asked 2020-10-21
Solve the equation \(\tan x \sec x \sin x= \tan^{2}x\)
asked 2020-11-12
Solve \(\displaystyle{\sec{{\left({30}\right)}}}+{\tan{{\left({45}\right)}}}-\frac{{\csc{{\left({60}\right)}}}}{{\sec{{\left({30}\right)}}}}+{\cos{{\left({60}\right)}}}+{\cot{{\left({45}\right)}}}\)
asked 2021-03-02
How to prove the following:
\(\displaystyle{{\tan}^{{2}}{x}}+{1}+{\tan{{x}}}{\sec{{x}}}={1}+\frac{{\sin{{x}}}}{{{\cos}^{{2}}{x}}}\)
asked 2021-03-06
Solve \(\displaystyle{{\tan}^{{2}}{x}}-{{\sin}^{{2}}{x}}={{\tan}^{{2}}{x}}{{\sin}^{{2}}{x}}\)
asked 2021-01-07
Prove that \(\displaystyle{\sec{{\left(\theta\right)}}}+{\csc{{\left(\theta\right)}}}={\left({\sin{{\left(\theta\right)}}}+{\cos{{\left(\theta\right)}}}\right)}{\left({\tan{{\left(\theta\right)}}}+{\cot{{\left(\theta\right)}}}\right)}\)
asked 2021-02-23
Prove that: \(\displaystyle{1}+\frac{{\cos{{x}}}}{{1}}-{\cos{{x}}}=\frac{{{\tan}^{{2}}{x}}}{{\left({\sec{{x}}}-{1}\right)}^{{2}}}\)
asked 2020-11-07
Solve the equation \sec x - \sec x sin^{2}x = \cos x
asked 2020-11-29
solve the multiple-angle equation. \(tan 3x - 1 = 0\)
asked 2020-10-31
Solve the equation \(\frac{{{1}+{{\tan}^{2}{A}}}}{{{1}+{{\cot}^{2}{A}}}}={\left(\frac{{{1}- \tan{{A}}}}{{{1}- \cot{{A}}}}\right)}^{2}={{\tan}^{2}{A}}\)
...