Find the general solution to cos2x=-cosx

Find the general solution to cos2x=-cosx

Question
Find the general solution to \(\displaystyle{\cos{{2}}}{x}=-{\cos{{x}}}\)

Answers (1)

2021-02-12

\(\displaystyle{\cos{{\left({2}{x}\right)}}}={2}{{\cos}^{{2}}{\left({x}\right)}}-{1}\)
\(\displaystyle{2}{{\cos}^{{2}}{\left({x}\right)}}-{1}={\cos{{\left({x}\right)}}}\)
\(\displaystyle{2}{{\cos}^{{2}}{\left({x}\right)}}-{1}-{\cos{{\left({x}\right)}}}={0}\)
\(\displaystyle{2}{{\cos}^{{2}}{\left({x}\right)}}-{\cos{{\left({x}\right)}}}-{1}={0}\)
\(\displaystyle{\left({2}{\cos{{\left({x}\right)}}}+{1}\right)}{\left({\cos{{\left({x}\right)}}}-{1}\right)}={0}\)
\(\displaystyle{2}{\cos{{\left({x}\right)}}}+{1}={0}\)
\(\displaystyle{2}{\cos{{\left({x}\right)}}}=-{1}\)
\(\displaystyle{\cos{{\left({x}\right)}}}=-\frac{{1}}{{2}}\)
\(\displaystyle{x}={{\cos}^{{-{{1}}}}{\left(-\frac{{1}}{{2}}\right)}}\)
\(x = \pi/3 [ 2\pi - \pi/3 = 5\pi/3 ] \)
\(x = \pi/3\ and\ 5 \pi/3\)
cos is positive in the first and fourth quadrant.
\(\displaystyle{\cos{{\left({x}\right)}}}-{1}={0}\)
\(\displaystyle{\cos{{\left({x}\right)}}}={1}\)
\(\displaystyle{x}={{\cos}^{{-{{1}}}}{\left({1}\right)}}\)
\(\displaystyle{x}={0},{2}\pi\)

0

Relevant Questions

asked 2020-10-28
Given tanx is \(\displaystyle\frac{{3}}{{4}}\). you can use the double formula to find \(\displaystyle{\tan{{2}}}{x}\). the teacher wants us to find 3 other doubles like \(\displaystyle{\sin{{2}}}{x}\) or \(\displaystyle{\cos{{2}}}{x}\) without using the double angle formulas.
asked 2020-10-23
Find the general solution: \(\displaystyle{1}-\frac{{{\tan}^{{2}}{\left({x}\right)}}}{{1}}+{{\tan}^{{2}}{\left({x}\right)}}={1}-{2}{{\sin}^{{2}}{\left({x}\right)}}\)
asked 2020-10-18
If \(\displaystyle{\sin{{x}}}+{\sin{{y}}}={a}{\quad\text{and}\quad}{\cos{{x}}}+{\cos{{y}}}={b}\) then find \(\displaystyle{\tan{{\left({x}-\frac{{y}}{{2}}\right)}}}\)
asked 2021-02-25
If \(\displaystyle{\cos{{x}}}=-\frac{{12}}{{13}}{\quad\text{and}\quad}{\csc{{x}}}{<}{0}\),
find \(\displaystyle{\cot{{\left({2}{x}\right)}}}\)
asked 2021-03-25
Find a general solution to \(\displaystyle{y}{''}+{4}{y}'+{3.75}{y}={109}{\cos{{5}}}{x}\)
To solve this, the first thing I did was find the general solutionto the homogeneous equivalent, and got
\(\displaystyle{c}_{{1}}{e}^{{-{5}\frac{{x}}{{2}}}}+{c}_{{2}}{e}^{{{3}\frac{{x}}{{2}}}}\)
Then i used the form \(\displaystyle{K}{\cos{{\left({w}{x}\right)}}}+{M}{\sin{{\left({w}{x}\right)}}}\) and got \(\displaystyle-{2.72}{\cos{{\left({5}{x}\right)}}}+{2.56}{\sin{{\left({5}{x}\right)}}}\) as a solution of the nonhomogeneous ODE
asked 2021-01-19
Verify this triganomic identity you can only use 1 side to solve \(\displaystyle\frac{{{\cos{{x}}}-{\tan{{x}}}}}{{{\sin{{x}}}+{\cos{{x}}}}}={\cos{{x}}}-{\sec{{x}}}\)
asked 2020-12-29
Prove the identity. \(\displaystyle\frac{{{\tan}^{{2}}{x}}}{{\sec{{x}}}}={\sec{{x}}}-{\cos{{x}}}\)
asked 2020-11-01
Simplify the expression \(\displaystyle\frac{{\sec{{x}}}}{{\sin{{x}}}}-\frac{{\sin{{x}}}}{{\cos{{x}}}}\)
asked 2021-02-11
Verify the identity \(\displaystyle{\sec{{x}}}-{\sec{{x}}}{{\sin}^{{2}}{x}}={\cos{{x}}}\)
asked 2021-01-28
Verify the identity \(\displaystyle\frac{{\cos{{x}}}}{{1}}-{\sin{{x}}}-{\tan{{x}}}=\frac{{1}}{{\cos{{x}}}}\)
...