Question

Solve the equation sin (x° - 20°) = cos 42° for x, where 0 < x < 90

Trigonometric equation and identitie
ANSWERED
asked 2020-10-26
Solve the equation
\(\displaystyle{\sin{{\left({x}°-{20}°\right)}}}={\cos{{42}}}°\) for x, where 0 < x < 90

Answers (1)

2020-10-27
\(\displaystyle{\sin{{\left({x}-{20}\right)}}}={\cos{{\left({42}{d}{e}{g}\right)}}}\)
\(\displaystyle{\cos{{\left({42}{d}{e}{g}\right)}}}={0.743144825}\)
\(\displaystyle\in{v}{e}{r}{s}{\sin{{\left({0.743144825}\right)}}}\) give angel = 48 deg
so, x-20 = 48deg
x = 68 deg
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-06-05
Verify that the equation is an identity. (Hint: \(\cos2x=\cos(x+x)\).)
\(\cos2x+2\sin^{2}x-1=0\)
asked 2021-06-05
\(\displaystyle{\left({\sin{{x}}}+{\cos{{x}}}\right)}²={1}+{\sin{{2}}}{x}\)
asked 2021-06-13
Prove the identity
\(\frac{1}{2\csc 2x}=\cos^2 x \tan x\)
Choose the sequence of steps below that verifies the identity
A) \(\cos^2 x \tan x =\cos^2 x \frac{\sin x}{\cos x}=\cos x \sin x =\frac{\sin 2x}{2}=\frac{1}{2\csc 2x}\)
B) \(\cos^2 x \tan x=\cos^2 x \frac{\cos x}{\sin x}=\cos x \sin x=\frac{\sin 2x}{2}=\frac{1}{2 \csc 2x}\)
C) \(\cos^2 x \tan x=\cos^2 x \frac{\cos x}{\sin x}=\cos x \sin x=2 \sin 2x=\frac{1}{2 \csc 2x}\)
D) \(\cos^2 x \tan x =\cos^2 x \frac{\sin x}{\cos x}=\cos x \sin x=2 \sin 2x=\frac{1}{2 \csc 2x}\)
asked 2021-05-31
Understand sine and cosine values on the unit circle Question
If the terminal side of angle tt goes through the point \(\displaystyle{\left(-{\left(\frac{{5}}{{13}}\right)},-{\left(\frac{{12}}{{13}}\right)}\right.}\) on the unit circle, then what is cos(t)?
Provide your answer below: \(\displaystyle{\cos{{\left({t}\right)}}}=□\)
asked 2021-05-29
tan(x)+√3=0
asked 2021-01-17
Solve the equation \(\csc x - \sin x = \cot x \cos x\)
asked 2021-05-12
Find the volume of the parallelepiped with adjacent edges PQ, PR, and PS.
\(p(3,\ 0,\ 1)\)
\(Q(-1,\ 2,\ 5)\)
\(R(5,\ 1,\ -1)\)
\(S(0,\ 4,\ 2)\)
asked 2020-11-12
Solve the equation \(\frac{{{3}{a}{{\sin}^{2}{\left(\theta\right)}} \cos{{\left(\theta\right)}}}}{{{3}{a}{{\cos}^{2}{\left(\theta\right)}} \sin{{\left(\theta\right)}}}}= \tan{{\left(\theta\right)}}\)
asked 2021-02-01
Solve the equation \(\sin \theta \cot \theta = \cos \theta\)
asked 2020-11-23
Solve the equation \(\frac{1}{\csc \theta-\cos \theta}=\frac{1+\cos \theta}{\sin \theta}\)
...