cos 360 + cos 234 + cos 162 + cos 18 = ? Note - numbers are in degree.

Question
\(\displaystyle{\cos{{360}}}+{\cos{{234}}}+{\cos{{162}}}+{\cos{{18}}}=\) ?
Note - numbers are in degree.

Answers (1)

2021-02-26
\(\displaystyle{\cos{{\left({18}\right)}}}={0.9510565162951535}\)
\(\displaystyle{\cos{{\left({162}\right)}}}=-{0.9510565162951535}\)...add this much & yu get zero
\(\displaystyle{\cos{{\left({360}\right)}}}={k}{o}{\sin{{e}}}{\left({0}\right)}={1}\)
\(\displaystyle{\cos{{\left({234}\right)}}}=-{0.5877852522924732}\)
0

Relevant Questions

asked 2021-02-15
[Triangle]
Find sin 1),sin #,cos 1), and cos &. Write each answer as a fraction in simplest form.
asked 2020-11-08
\(\displaystyle{\cos{{x}}}{\left({e}^{{{2}{y}}}-{y}\right)}{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={e}^{{y}}{\sin{{2}}}{x},{y}{\left({0}\right)}={0}\)
asked 2021-01-07
Prove that \(\displaystyle{\sec{{\left(\theta\right)}}}+{\csc{{\left(\theta\right)}}}={\left({\sin{{\left(\theta\right)}}}+{\cos{{\left(\theta\right)}}}\right)}{\left({\tan{{\left(\theta\right)}}}+{\cot{{\left(\theta\right)}}}\right)}\)
asked 2021-02-05
Solve \(\displaystyle{{\cot}^{{2}}\theta}-{{\cos}^{{2}}\theta}\)
asked 2020-11-12
If \(\displaystyle{\cot{{\left(\theta\right)}}}={7}\), what is \(\displaystyle{\sin{{\left(\theta\right)}}},{\cos{{\left(\theta\right)}}},{\sec{{\left(\theta\right)}}}\) between 0 and \(\displaystyle{2}\pi\)?
asked 2020-11-12
Solve \(\displaystyle{\sec{{\left({30}\right)}}}+{\tan{{\left({45}\right)}}}-\frac{{\csc{{\left({60}\right)}}}}{{\sec{{\left({30}\right)}}}}+{\cos{{\left({60}\right)}}}+{\cot{{\left({45}\right)}}}\)
asked 2020-10-26
Solve: \(\displaystyle{4}{\sin{{\left({2}{y}-{0.3}\right)}}}+{5}{\cos{{\left({2}{y}-{0.3}\right)}}}={0}\)
asked 2021-01-25
if \(\displaystyle{\cos{{45}}}=\frac{{1}}{\sqrt{{2}}}\), find \(\displaystyle{\cos{{315}}},{\sin{{270}}},{\sin{{210}}},{\tan{{210}}}\)
asked 2020-12-24
Solve \(\displaystyle{\cos{{30}}}\cdot\frac{{\sin{{\left(-{50}\right)}}}}{{\tan{{70}}}}\)
asked 2021-02-25
Find every angle theta with \(\displaystyle{0}\le\theta\le{2}\pi{r}{a}{d}{i}{a}{n}{s},{\quad\text{and}\quad}{2}{{\sin}^{{2}}{\left(\theta\right)}}+{\cos{{\left(\theta\right)}}}={2}\)
...