Solve log4(x+3)+log4(2-x)=1

Question
Logarithms
asked 2021-01-10
Solve \(\displaystyle{\log{{4}}}{\left({x}+{3}\right)}+{\log{{4}}}{\left({2}-{x}\right)}={1}\)

Answers (1)

2021-01-11
\(\displaystyle{\log{{4}}}{\left({x}+{3}\right)}+{\log{{4}}}{\left({2}-{x}\right)}={1}\)
\(\displaystyle{\log{{4}}}{\left[{\left({x}+{3}\right)}\cdot{\left({2}-{x}\right)}\right]}={1}\)
\(\displaystyle{\left({x}+{3}\right)}\cdot{\left({2}-{x}\right)}={4}\)
\(\displaystyle-{x}^{{2}}-{x}+{6}={4}\)
\(\displaystyle-{x}^{{2}}-{x}+{2}={0}{\quad\text{or}\quad}{x}^{{2}}+{x}-{2}={0}\)
\(\displaystyle{\left({x}-{1}\right)}{\left({x}+{2}\right)}={0}\)
0

Relevant Questions

asked 2020-10-20
Condense them to the same base before solving for x \(\displaystyle{\log{{16}}}{\left({x}\right)}+{\log{{4}}}{\left({x}\right)}+{\log{{2}}}{\left({x}\right)}={7}\)
asked 2021-01-15
Solve the equation and find the exact solution:
\(\displaystyle{\log{{b}}}{a}{s}{e}{2}{\left({\log{{b}}}{a}{s}{e}{3}{\left({\log{{b}}}{a}{s}{e}{4}{\left({x}\right)}\right)}\right)}={0}\)
asked 2020-12-03
Solve below log Equation, this equation came with different bases: \(\displaystyle{P}{S}{K}{\log{{2}}}{\left({x}+{2}\right)}-{3}\cdot{\log{{8}}}{\left({x}+{3}\right)}={2}\)ZSK
asked 2021-02-18
Solve the equations and inequalities. Write the solution sets to the inequalities in interval notation. \(\displaystyle{\log{{2}}}{\left({3}{x}−{1}\right)}={\log{{2}}}{\left({x}+{1}\right)}+{3}\)
asked 2020-12-25
Solve the equations and inequalities: \(\frac{2^{x}}{3}\leq\frac{5^{x}}{4}\)
asked 2020-10-27
Solve the equations and inequalities: \(\displaystyle{\frac{{{2}^{{{x}}}}}{{{3}}}}\leq{\frac{{{5}^{{{x}}}}}{{{4}}}}\)
asked 2021-02-16
How to solve \(\displaystyle{\log{{50}}}+{\log{{\left(\frac{{x}}{{2}}\right)}}}={0}\)
asked 2020-11-08
Solve for x \(\displaystyle{1200}{\left({1.03}\right)}^{{x}}={800}{\left({1.08}\right)}^{{x}}\)
asked 2020-10-19
\(\displaystyle{\log{{\left({x}+{5}\right)}}}-{\log{{\left({x}-{3}\right)}}}={\log{{2}}}\)
asked 2021-02-05
\(\displaystyle{\log{{3}}}{\left({x}+{3}\right)}−{\log{{3}}}{\left({x}−{3}\right)}={2}\)
...