# Find the products AB and BA to determine whether B is the multiplicative inverse of A. A=begin{bmatrix}-4 & 0 1 & 3 end{bmatrix}, B=begin{bmatrix}-2 & 4 0 & 1 end{bmatrix}

Find the products AB and BA to determine whether B is the multiplicative inverse of A.
$A=\left[\begin{array}{cc}-4& 0\\ 1& 3\end{array}\right],B=\left[\begin{array}{cc}-2& 4\\ 0& 1\end{array}\right]$
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Yusuf Keller
Given
$A=\left[\begin{array}{cc}-4& 0\\ 1& 3\end{array}\right],B=\left[\begin{array}{cc}-2& 4\\ 0& 1\end{array}\right]$
Now,
$AB=\left[\begin{array}{cc}-4& 0\\ 1& 3\end{array}\right]\left[\begin{array}{cc}-2& 4\\ 0& 1\end{array}\right]$
$=\left[\begin{array}{cc}-4\left(-2\right)+0\left(0\right)& -4\left(4\right)+0\left(1\right)\\ 1\left(-2\right)+3\left(0\right)& 1\left(4\right)+3\left(1\right)\end{array}\right]$
$=\left[\begin{array}{cc}8& -16\\ -2& 7\end{array}\right]$
Step 2
$BA=\left[\begin{array}{cc}-2& 4\\ 0& 1\end{array}\right]\left[\begin{array}{cc}-4& 0\\ 1& 3\end{array}\right]$
$=\left[\begin{array}{cc}-2\left(-4\right)+4\left(1\right)& -2\left(0\right)+4\left(3\right)\\ 0\left(-4\right)+1\left(1\right)& 0\left(0\right)+1\left(3\right)\end{array}\right]$
$=\left[\begin{array}{cc}12& 12\\ 1& 3\end{array}\right]$
Clearly the products AB and BA are not identity matrices, therefore B is not the multiplicative inverse of A.
Jeffrey Jordon