solve the equation log(base16)(3x-1)= log(base4)(3x)+log(base4)0.5?

Anish Buchanan 2021-03-07 Answered

solve the equation \(\log(base16)(3x-1)= \log(base4)(3x)+\log(base4)0.5\)?

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

unessodopunsep
Answered 2021-03-08 Author has 3701 answers

l\(\displaystyle{o}{g}{\left[{4}\right]}{\left({16}\right)}\cdot{\log{{\left[{16}\right]}}}{4}={1}\) where [] denotes base, is an example of a fundamental rule in logarithms: \(\displaystyle{\log{{\left[{a}\right]}}}{\left({b}\right)}\cdot{\log{{\left[{b}\right]}}}{\left({a}\right)}={1}\), so, since \(\displaystyle{\log{{\left[{4}\right]}}}{\left({16}\right)}={2}{\log{{\left[{4}\right]}}}{4}={2},{\log{{\left[{16}\right]}}}{4}=\frac{{1}}{{2}}\), or, alternatively, \(log[16]4=log[16]\frac{16^{1}}{2}=\frac{1}{2}log[16]16=\frac{1}{2}.\)
Also, \(\displaystyle{\log{{\left[{a}\right]}}}{\left({x}\right)}={\log{{\left[{b}\right]}}}\frac{{{x}}}{{\log{{\left[{b}\right]}}}}\)
(a). \(\displaystyle{\log{{\left[{16}\right]}}}{\left({3}{x}-{1}\right)}={\log{{\left[{4}\right]}}}{\left({3}{x}\right)}+{\log{{\left[{4}\right]}}}{\left({0.5}\right)}⇒{2}{\log{{\left[{4}\right]}}}{\left({3}{x}-{1}\right)}={\log{{\left[{4}\right]}}}{\left({3}{x}\cdot{0.5}\right)}\). We can equate the logs: \(\displaystyle{\left({3}{x}-{1}\right)}^{{2}}={3}\frac{{x}}{{2}}\rightarrow{9}{x}^{{2}}-{6}{x}+{1}={3}\frac{{x}}{{2}}⇒{18}{x}^{{2}}-{12}{x}-{3}{x}+{2}={0}\)
\(\displaystyle\rightarrow{18}{x}^{{2}}-{15}{x}+{2}={0}\rightarrow{\left({3}{x}-{2}\right)}{\left({6}{x}-{1}\right)}={0}\)
From this \(\displaystyle{x}=\frac{{2}}{{3}}{\quad\text{or}\quad}\frac{{1}}{{6}}.\) Substitute these values in the original equation: \(\displaystyle{0}=\frac{{1}}{{2}}-\frac{{1}}{{2}}\). The value \(\displaystyle\frac{{1}}{{6}}\) cannot be used because it would require the log of a negative number so the only solution is \(Lx=\frac{2}{3}\)

Have a similar question?
Ask An Expert
15
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more
...