Solve below log Equation, this equation came with different bases: log2(x+2)-3*log8(x+3)=2

Question
Logarithms
asked 2020-12-03
Solve below log Equation, this equation came with different bases: \(\displaystyle{P}{S}{K}{\log{{2}}}{\left({x}+{2}\right)}-{3}\cdot{\log{{8}}}{\left({x}+{3}\right)}={2}\)ZSK

Answers (1)

2020-12-04
\(\displaystyle{\log{{2}}}{\left({x}+{2}\right)}-{3}\cdot{\log{{8}}}{\left({x}+{3}\right)}={2}\)
\(\displaystyle{8}={2}^{{3}},\ {s}{o}\ {\log{{8}}}={\left(\frac{{1}}{{3}}\right)}{\log{{2}}}\)
\(\displaystyle{\log{{2}}}{\left({x}+{2}\right)}-{\log{{2}}}{\left({x}+{3}\right)}={2}\)
\(\displaystyle{\log{{2}}}{\left[\frac{{{x}+{2}}}{{{x}+{3}}}\right]}={2}\)
thus, \(\displaystyle\frac{{{x}+{2}}}{{{x}+{3}}}={2}^{{2}}={4}\)
x+3=4*(x+3)
x+3=4x+12
3x=3-12=-9
x=-3
0

Relevant Questions

asked 2021-01-15
Solve the equation and find the exact solution:
\(\displaystyle{\log{{b}}}{a}{s}{e}{2}{\left({\log{{b}}}{a}{s}{e}{3}{\left({\log{{b}}}{a}{s}{e}{4}{\left({x}\right)}\right)}\right)}={0}\)
asked 2021-02-18
Solve the equations and inequalities. Write the solution sets to the inequalities in interval notation. \(\displaystyle{\log{{2}}}{\left({3}{x}−{1}\right)}={\log{{2}}}{\left({x}+{1}\right)}+{3}\)
asked 2021-01-13
Which equation is equivalent to \(log y = 2x + 1\)?
(A) \(y = 10(100)^x\)
(B) \(y = 10^x\)
(C) \(y=e^2x+1\)
(D) \(y = e^2\)
asked 2021-02-16
How to solve \(\displaystyle{\log{{50}}}+{\log{{\left(\frac{{x}}{{2}}\right)}}}={0}\)
asked 2021-03-07
solve the equation \(\displaystyle{\log{{\left({b}{a}{s}{e}{16}\right)}}}{\left({3}{x}-{1}\right)}={\log{{\left({b}{a}{s}{e}{4}\right)}}}{\left({3}{x}\right)}+{\log{{\left({b}{a}{s}{e}{4}\right)}}}{0.5}\)?
asked 2020-10-19
\(\displaystyle{\log{{\left({x}+{5}\right)}}}-{\log{{\left({x}-{3}\right)}}}={\log{{2}}}\)
asked 2021-01-31
Find the solution \(\displaystyle{\log{{\left({6}{x}+{10}\right)}}}=\frac{{\log{{\left({x}\right)}}}}{{\log{{\left(\frac{{1}}{{2}}\right)}}}}\)
asked 2020-10-20
Condense them to the same base before solving for x \(\displaystyle{\log{{16}}}{\left({x}\right)}+{\log{{4}}}{\left({x}\right)}+{\log{{2}}}{\left({x}\right)}={7}\)
asked 2020-11-10
\(\displaystyle{\log{{8}}}{\left({28}{k}-{20}\right)}+{15}={18}\)
asked 2020-11-23
If \(log 3 = A and log 7 = B\), find
\(log_7 9\)
in terms of A and B.
...