Prove that V is a vector space. V=T(m, n), the set of linear transformations T : R^{m} rightarrow R^{n}, together with the usual addition and scalar multiplication of functions.

Prove that V is a vector space. V=T(m, n), the set of linear transformations T : R^{m} rightarrow R^{n}, together with the usual addition and scalar multiplication of functions.

Question
Transformations of functions
asked 2020-11-24
Prove that V is a vector space. \(\displaystyle{V}={T}{\left({m},\ {n}\right)}\), the set of linear transformations \(\displaystyle{T}\ :\ {R}^{{{m}}}\ \rightarrow\ {R}^{{{n}}}\), together with the usual addition and scalar multiplication of functions.

Answers (1)

2020-11-25
Step 1
\(\displaystyle{V}={T}{\left({m},\ {n}\right)},\) the set of linear transformations \(\displaystyle{T}\ :\ {R}^{{{m}}}\ \rightarrow\ {R}^{{{n}}},\) together with the usual addition and scalar multiplication of functions are clearly defined.
next we need to determine if the five conditions of Definion 7.1 are all met.
If \(\displaystyle{T}{\left({u}\right)}\) and \(\displaystyle{T}{\left({v}\right)}\) are a linear transformation if for all vectors u and v and \(\displaystyle{R}^{{{m}}},\) then their sum will also be a linear transformation in \(\displaystyle{R}^{{{m}}}\), that is, \(\displaystyle{V}={T}{\left({m},\ {n}\right)}\) is closed under addition.
If \(\displaystyle{T}{\left({u}\right)}\) is a linear transformation if for all vectors u in \(\displaystyle{R}^{{{m}}}\) and c is a scalar then i and \(\displaystyle{c}{T}{\left({u}\right)}\) will also be a linear transformation thus \(\displaystyle{V}={T}{\left({m},\ {n}\right)}\) is also closed under scalar multiplication.
M If \(\displaystyle{T}{\left({0}\right)}={0}\) is an identical zero transformation, then if \(\displaystyle{T}{\left({u}\right)}\) is in \(\displaystyle{R}^{{{m}}}\) linear transformation, then T(0)\ +\ T(u)=T)ZSK for all \(\displaystyle{T}{\left({u}\right)}\) in \(\displaystyle{R}^{{{m}}}\), so that \(\displaystyle{T}{\left({0}\right)}\) is the zero transformation.
If \(\displaystyle{T}{\left({u}\right)}\) linear transformation, it has its inverse linear transformation \(\displaystyle-{T}{\left({u}\right)}\) so that
\(\displaystyle{T}{\left({u}\right)}\ +\ {\left(-{T}{\left({u}\right)}\right)}={T}{\left({u}\right)}\ +\ {T}{\left(-{u}\right)}={0}\)
Step 2
a) We are checking whether you are
\(\displaystyle{v}_{{{1}}}\ +\ {v}_{{{2}}}={v}_{{{2}}}\ +\ {v}_{{{1}}}\)
PSKv_{1}\ +\ v_{2}=T(v_{1})=T(x_{1}\ +\ x_{2}\ +\ \cdots\ x_{m})\ +\ T(y_{1}\ +\ y_{2}\ +\ \cdots\ y_{n})
\(\displaystyle={T}{\left({y}_{{{1}}}\ +\ {y}_{{{2}}}\ +\ \cdots\ {y}_{{{n}}}\right)}\ +\ {T}{\left({x}_{{{1}}}\ +\ {x}_{{{2}}}\ +\ \cdots\ {x}_{{{m}}}\right)}={v}_{{{2}}}\ +\ {v}_{{{1}}}\)
Therefore, commutativity is valid.
b) Check
\(\displaystyle{\left({v}_{{{1}}}\ +\ {v}_{{{2}}}\right)}\ +\ {v}_{{{3}}}={v}_{{{1}}}\ +\ {\left({v}_{{{2}}}\ +\ {v}_{{{3}}}\right)}\)
\(\displaystyle{\left({v}_{{{1}}}\ +\ {v}_{{{2}}}\right)}\ +\ {v}_{{{3}}}={\left({\left({T}{\left({v}_{{{1}}}\right)}\ +\ {T}{\left({v}_{{{1}}}\right)}\right)}\ +\ {T}{\left({v}_{{{3}}}\right)}\right.}\)
\(\displaystyle={\left({T}{\left({x}_{{{1}}}\ +\ {x}_{{{2}}}\ +\ \cdots\ {x}_{{{m}}}\right)}\ +\ {T}{\left({y}_{{{1}}}\ +\ {y}_{{{2}}}\ +\ \cdots\ {y}_{{{n}}}\right)}\right)}\ +\ {T}{\left({z}_{{{1}}}\ +\ {z}_{{{2}}}\ \cdots\ +\ {z}_{{{m}}}\right)}\)
\(\displaystyle={T}{\left({x}_{{{1}}}\ +\ {x}_{{{2}}}\ +\ \cdots\ {x}_{{{m}}}\right)}\ +\ {T}{\left({y}_{{{1}}}\ +\ {y}_{{{2}}}\ +\ \cdots\ {y}_{{{n}}}\right)}\ +\ {T}{\left({z}_{{{1}}}\ +\ {z}_{{{2}}}\ +\ \cdots\ +\ {z}_{{{m}}}\right)}={v}_{{{1}}}\ +\ {\left({v}_{{{2}}}\ +\ {v}_{{{3}}}\right)}\)
The law of associativity also applies.
c) Let c be scalar, check
\(\displaystyle{c}{\left({v}_{{{1}}}\ +\ {v}_{{{2}}}\right)}={x}{v}_{{{1}}}\ +\ {c}{v}_{{{2}}}\)
\(\displaystyle{c}{\left({T}{\left({x}_{{{1}}}\ +\ {x}_{{{2}}}\ +\ \cdots\ {x}_{{{m}}}\right)}\ +\ {T}{\left({y}_{{{1}}}\ +\ {y}_{{{2}}}\ +\ \cdots\ {y}_{{{n}}}\right)}\right)}={c}{\left({T}{\left({x}_{{{1}}}\right)}\ +\ {T}{\left({x}_{{{2}}}\ +\ \cdots\ {T}{\left({x}_{{{m}}}\right)}\ +\ {T}{\left({y}_{{{1}}}\right)}\ +\ {T}{\left({y}_{{{2}}}\right)}\ +\ \cdots\ {T}{\left({y}_{{{n}}}\right)}\right)}\right.}\)
\(\displaystyle={c}{T}{\left({x}_{{{1}}}\right)}\ +\ {c}{T}{\left({x}_{{{2}}}\right)}\ +\ \cdots\ +\ {c}{T}{\left({x}_{{{m}}}\right)}\ +\ {c}{T}{\left({y}_{{{1}}}\right)}\ +\ {c}{T}{\left({y}_{{{2}}}\right)}\ +\ \cdots\ {c}{T}{\left({y}_{{{n}}}\right)}\)
\(\displaystyle={c}{\left({T}{\left({x}_{{{1}}}\right)}\ +\ {T}{\left({x}_{{{2}}}\right)}\ +\ \cdots\ {T}{\left({x}_{{{m}}}\right)}\right)}\ +\ {c}{\left({T}{\left({y}_{{{1}}}\right)}\ +\ {T}{\left({y}_{{{2}}}\right)}\ +\ \cdots\ {T}{\left({y}_{{{n}}}\right)}\right)}\)
\(\displaystyle\Rightarrow\ {c}{\left({v}_{{{1}}}\ +\ {v}_{{{2}}}\right)}={c}{v}_{{{1}}}\ +\ {c}{v}_{{{2}}}\)
Step 3
d) Let \(\displaystyle{c}_{{{1}}},\ {c}_{{{2}}}\) be scalars, check
\(\displaystyle{\left({c}_{{{1}}}\ +\ {c}_{{{2}}}\right)}{v}_{{{1}}}={c}_{{{1}}}{v}_{{{1}}}\ +\ {c}_{{{2}}}{v}_{{{1}}}\)
\(\displaystyle{\left({c}_{{{1}}}\ +\ {c}_{{{2}}}\right)}{\left({T}{\left({x}_{{{1}}}\ +\ {x}_{{{2}}}\ +\ \cdots\ {x}_{{{m}}}\right)}={\left({c}_{{{1}}}\ +\ {c}_{{{2}}}\right)}{\left({T}{\left({x}_{{{1}}}\right)}\ +\ {\left({c}_{{{1}}}\ +\ {c}_{{{2}}}\right)}{\left({T}{\left({x}_{{{2}}}\right)}\ +\ \cdots\ +\ {\left({c}_{{{1}}}\ +\ {c}_{{{2}}}\right)}{\left({T}{\left({x}_{{{m}}}\right)}\right)}\right.}\right.}\right.}\)
\(\displaystyle={c}_{{{1}}}{\left({T}{\left({x}_{{{1}}}\right\rbrace}\ +\ {c}_{{{2}}}{\left({T}{\left({x}_{{{1}}}\right)}\right)}\ +\ \cdots\ +\ {\left({c}_{{{1}}}{T}{\left({x}_{{{m}}}\right)}\right)}\ +\ {c}_{{{2}}}{\left({T}{\left({x}_{{{m}}}\right)}\right)}\right.}\) \(\displaystyle={c}_{{{1}}}{\left({T}{\left({x}_{{{1}}}\ +\ {x}_{{{2}}}\ +\ \cdots\ {x}_{{{m}}}\right)}\ +\ {c}_{{{2}}}{\left({T}{\left({x}_{{{1}}}\ +\ {x}_{{{2}}}\ +\ \cdots\ {x}_{{{m}}}\right)}\right.}\right.}\)
\(\displaystyle{R}{i}{>}{a}{r}{r}{o}{w}\ {\left({c}_{{{1}}}\ +\ {c}_{{{2}}}\right)}{v}_{{{1}}}={c}_{{{1}}}{v}_{{{1}}}\ +\ {c}_{{{2}}}{v}_{{{1}}}\)
e) Check if it is
\(\displaystyle{1}{v}_{{{1}}}={v}_{{{1}}}\)
1v_{1}=1(T(x_{1}\ +\ x_{2}\ +\ \cdots\ x_{m})=1\ \cdot\ (T(x_{1}\ +\ x_{2}\ +\ \cdots\ x_{m})=(T(x_{1}\ +\ x_{2}\ +\ \cdots\ x_{m})=v_{1}ZSK
All six terms of the 7.1 definion are satisfied therefore \(\displaystyle{V}={T}{\left({m},\ {n}\right)}\) is a vector space.
0

Relevant Questions

asked 2020-11-30

Consider \(\displaystyle{V}={s}{p}{a}{n}{\left\lbrace{\cos{{\left({x}\right)}}},{\sin{{\left({x}\right)}}}\right\rbrace}\) a subspace of the vector space of continuous functions and a linear transformation \(\displaystyle{T}:{V}\rightarrow{V}\) where \(\displaystyle{T}{\left({f}\right)}={f{{\left({0}\right)}}}\times{\cos{{\left({x}\right)}}}−{f{{\left(π{2}\right)}}}\times{\sin{{\left({x}\right)}}}.\) Find the matrix of T with respect to the basis \(\displaystyle{\left\lbrace{\cos{{\left({x}\right)}}}+{\sin{{\left({x}\right)}}},{\cos{{\left({x}\right)}}}−{\sin{{\left({x}\right)}}}\right\rbrace}\) and determine if T is an isomorphism.

asked 2020-11-03
Give the correct answer and solve the given equation \(V = T(m,\ n),\)
The set of lineartrans formations
\(T\ :\ R^{m}\ \rightarrow\ R^{n},\)
together with the usualadditionand scalar multiplication of functions.
asked 2021-02-25
Let U and W be vector spaces over a field K. Let V be the set of ordered pairs (u,w) where u ∈ U and w ∈ W. Show that V is a vector space over K with addition in V and scalar multiplication on V defined by
(u,w)+(u',w')=(u+u',w+w') and k(u,w)=(ku,kw)
(This space V is called the external direct product of U and W.)
asked 2021-06-06
For each of the following functions f (x) and g(x), express g(x) in the form a: f (x + b) + c for some values a,b and c, and hence describe a sequence of horizontal and vertical transformations which map f(x) to g(x).
\(\displaystyle{f{{\left({x}\right)}}}={x}^{{2}}-{2},{g{{\left({x}\right)}}}={2}+{8}{x}-{4}{x}^{{2}}\)
asked 2021-05-04
For each of the following functions f (x) and g(x), express g(x) in the form a: f (x + b) + c for some values a,b and c, and hence describe a sequence of horizontal and vertical transformations which map f(x) to g(x).
\(\displaystyle{f{{\left({x}\right)}}}={x}^{{2}}+{3},{g{{\left({x}\right)}}}={x}^{{2}}-{6}{x}+{8}\)
asked 2021-05-08
For each of the following functions f (x) and g(x), express g(x) in the form a: f (x + b) + c for some values a,b and c, and hence describe a sequence of horizontal and vertical transformations which map f(x) to g(x).
\(\displaystyle{f{{\left({x}\right)}}}={x}^{{2}},{g{{\left({x}\right)}}}={3}{x}^{{2}}-{24}{x}+{8}\)
asked 2021-05-01
For each of the following functions f (x) and g(x), express g(x) in the form a: f (x + b) + c for some values a,b and c, and hence describe a sequence of horizontal and vertical transformations which map f(x) to g(x).
\(\displaystyle{f{{\left({x}\right)}}}={x}^{{2}},{g{{\left({x}\right)}}}={2}{x}^{{2}}+{4}{x}\)
asked 2021-01-17
Guided Proof Let \({v_{1}, v_{2}, .... V_{n}}\) be a basis for a vector space V.
Prove that if a linear transformation \(T : V \rightarrow V\) satisfies
\(T (v_{i}) = 0\ for\ i = 1, 2,..., n,\) then T is the zero transformation.
To prove that T is the zero transformation, you need to show that \(T(v) = 0\) for every vector v in V.
(i) Let v be the arbitrary vector in V such that \(v = c_{1} v_{1} + c_{2} v_{2} +\cdots + c_{n} V_{n}\)
(ii) Use the definition and properties of linear transformations to rewrite T(v) as a linear combination of \(T(v_{j})\) .
(iii) Use the fact that \(T (v_{j}) = 0\)
to conclude that \(T (v) = 0,\) making T the zero transformation.
asked 2020-11-30
Assum T: R^m to R^n is a matrix transformation with matrix A. Prove that if the columns of A are linearly independent, then T is one to one (i.e injective). (Hint: Remember that matrix transformations satisfy the linearity properties.
Linearity Properties:
If A is a matrix, v and w are vectors and c is a scalar then
\(A 0 = 0\)
\(A(cv) = cAv\)
\(A(v\ +\ w) = Av\ +\ Aw\)
asked 2021-03-13
When a person stands on tiptoe (a strenuous position), the position of the foot is as shown in Figure (a). The total gravitational force on the body, vector F g, is supported by the force vector n exerted by the floor on the toes of one foot. A mechanical model of the situation is shown in Figure (b), where vector T is the force exerted by the Achilles tendon on the foot and vector R is the force exerted by the tibia on the foot. Find the values of vector T , vector R , and θ when vector F g = 805 N. (Do not assume that vector R is parallel to vector T .)
...