Why exactly is the resistance of a conductor inversely proportional to the area of its cross-section?

Before I explain my query, I would like to clarify that I am a ninth-grader who got this question while studying the formula $R\propto \frac{1}{A}$ where $A$ is the area of cross-section.

I have often asked this question to my teachers and they always give me the classic "corridor and field example". They told me that if 5 people walk in a corridor, they will find it harder to get across than if they were to be walking through a field- the same goes for electrons passing through a conductor. My counter-argument would be that if the width of the conductor increases, so will the number of positive ions (my textbook says that positive ions in conductors hinder the flow of current) and hence, more the resistance.

I would really appreciate it if the answer could be explained to me in simple terms as I'm not well versed with the more complex formulae involved in this concept. If not, do let me know of the concepts I should read about (preferably the specific books) to understand the solution better.

Before I explain my query, I would like to clarify that I am a ninth-grader who got this question while studying the formula $R\propto \frac{1}{A}$ where $A$ is the area of cross-section.

I have often asked this question to my teachers and they always give me the classic "corridor and field example". They told me that if 5 people walk in a corridor, they will find it harder to get across than if they were to be walking through a field- the same goes for electrons passing through a conductor. My counter-argument would be that if the width of the conductor increases, so will the number of positive ions (my textbook says that positive ions in conductors hinder the flow of current) and hence, more the resistance.

I would really appreciate it if the answer could be explained to me in simple terms as I'm not well versed with the more complex formulae involved in this concept. If not, do let me know of the concepts I should read about (preferably the specific books) to understand the solution better.