An electron is shot towards a target that is negatively charged. While the electron is traveling, the target makes an abrupt move towards the electron. While the information that the target moved is traveling from the target to the electron, the electron behaves like an electron that is moving towards a target that is in the original position.
How can energy be conserved when an electron that is moving towards a nearby charge behaves like it was moving towards a far away charge? Seems we end up with electron being at 2 meters distance from the target, while the electron had enough energy to travel to at most 4 meters distance from the target.
It also seems to me that "moving the target requires energy" is not a solution to this problem.
How can energy be conserved when an electron that is moving towards a nearby charge behaves like it was moving towards a far away charge? Seems we end up with electron being at 2 meters distance from the target, while the electron had enough energy to travel to at most 4 meters distance from the target.
It also seems to me that "moving the target requires energy" is not a solution to this problem.