Step 1

\(\displaystyle{f{{\left({x}\right)}}}={x}^{{{5}}}+{x}\)

The leading coefficient is 1 (positive) and the degree is 5 (odd)

Therefore \(\displaystyle{f{{\left({x}\right)}}}\rightarrow\infty,{a}{s}\ {x}\rightarrow\infty\)

and \(\displaystyle{f{{\left({x}\right)}}}\rightarrow-\infty,{a}{s}\ {x}\rightarrow-\infty\)

Step 2

\(\displaystyle{f{{\left({x}\right)}}}={x}^{{{5}}}+{x}\)

The leading coefficient is 1 (positive) and the degree is 5 (odd)

Therefore \(\displaystyle{f{{\left({x}\right)}}}\rightarrow\infty,{a}{s}\ {x}\rightarrow\infty\)

and \(\displaystyle{f{{\left({x}\right)}}}\rightarrow-\infty,{a}{s}\ {x}\rightarrow-\infty\)

Step 2