For each set of data below, draw a scatterplot and decide whether or not the data exhibits approximately periodic behaviour. a) begin{array}{|c|c|}hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 hline y & 0 & 1 & 1.4 & 1 & 0 & -1 & -1.4 & -1 & 0 & 1 & 1.4 & 1 & 0 hline end{array} b) begin{array}{|c|c|}hline x & 0 & 1 & 2 & 3 & 4 hline y & 4 & 1 & 0 & 1 & 4 hline end{array} c) begin{array}{|c|c|}hline x & 0 & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 & 3.5 hline y & 0 & 1.9 & 3.5 & 4.5 & 4.7 & 4.3 & 3.4 & 2.4 hline end{array} d) begin{array}{|c|c|}hline x & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 12 hline y & 0 & 4.7 & 3.4 & 1.7 & 2.1 & 5.2 & 8.9 & 10.9 & 10.2 & 8.4 & 10.4 hline end{array}

Question
Scatterplots
asked 2021-01-13
For each set of data below, draw a scatterplot and decide whether or not the data exhibits approximately periodic behaviour.
a) \(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}{x}&{0}&{1}&{2}&{3}&{4}&{5}&{6}&{7}&{8}&{9}&{10}&{11}&{12}\backslash{h}{l}\in{e}{y}&{0}&{1}&{1.4}&{1}&{0}&-{1}&-{1.4}&-{1}&{0}&{1}&{1.4}&{1}&{0}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)
b) \(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}{x}&{0}&{1}&{2}&{3}&{4}\backslash{h}{l}\in{e}{y}&{4}&{1}&{0}&{1}&{4}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)
c) \(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}{x}&{0}&{0.5}&{1.0}&{1.5}&{2.0}&{2.5}&{3.0}&{3.5}\backslash{h}{l}\in{e}{y}&{0}&{1.9}&{3.5}&{4.5}&{4.7}&{4.3}&{3.4}&{2.4}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)
d) \(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}{x}&{0}&{2}&{3}&{4}&{5}&{6}&{7}&{8}&{9}&{10}&{12}\backslash{h}{l}\in{e}{y}&{0}&{4.7}&{3.4}&{1.7}&{2.1}&{5.2}&{8.9}&{10.9}&{10.2}&{8.4}&{10.4}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)

Answers (1)

2021-01-14
a) The graph exhibits approximately periodic behaviour.
image
b) Given information is not enough to determine whether the bahaviour is periodic.
image
c) Given information is not enough to determine whether the bahaviour is periodic.
image
d) Information does not exhibit a periodic behaviour.
image
0

Relevant Questions

asked 2021-02-09
A two-sample inference deals with dependent and independent inferences. In a two-sample hypothesis testing problem, underlying parameters of two different populations are compared. In a longitudinal (or follow-up) study, the same group of people is followed over time. Two samples are said to be paired when each data point in the first sample is matched and related to a unique data point in the second sample.
This problem demonstrates inference from two dependent (follow-up) samples using the data from the hypothetical study of new cases of tuberculosis (TB) before and after the vaccination was done in several geographical areas in a country in sub-Saharan Africa. Conclusion about the null hypothesis is to note the difference between samples.
The problem that demonstrates inference from two dependent samples uses hypothetical data from the TB vaccinations and the number of new cases before and after vaccination. PSK\begin{array}{|c|c|} \hline Geographical\ regions & Before\ vaccination & After\ vaccination\\ \hline 1 & 85 & 11\\ \hline 2 & 77 & 5\\ \hline 3 & 110 & 14\\ \hline 4 & 65 & 12\\ \hline 5 & 81 & 10\\\hline 6 & 70 & 7\\ \hline 7 & 74 & 8\\ \hline 8 & 84 & 11\\ \hline 9 & 90 & 9\\ \hline 10 & 95 & 8\\ \hline \end{array}ZSK
Using the Minitab statistical analysis program to enter the data and perform the analysis, complete the following: Construct a one-sided \(\displaystyle{95}\%\) confidence interval for the true difference in population means. Test the null hypothesis that the population means are identical at the 0.05 level of significance.
asked 2021-02-11
Determine the algebraic modeling which of the following data sets are linear and which are exponential. For the linear sets, determine the slope. For the exponential sets, determine the growth factor or the decay factor
a) \(\begin{array}{|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline y & \frac{1}{9} & \frac{1}{3} & 1 & 3 & 9 & 27 & 81 \\ \hline \end{array}\) b) \(\begin{array}{|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline y & 2 & 2.6 & 3.2 & 3.8 & 4.4 & 5.0 & 5.6 \\ \hline \end{array}\)
c) \(\begin{array}{|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline y & 3.00 & 5.0 & 7 & 9 & 11 & 13 & 15 \\ \hline \end{array}\)
d) \(\begin{array}{|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline y & 5.25 & 2.1 & 0.84 & 0.336 & 0.1344 & 0.5376 & 0.021504 \\ \hline \end{array}\)
asked 2020-12-02
Gastroenterology
We present data relating protein concentration to pancreatic function as measured by trypsin secretion among patients with cystic fibrosis.
If we do not want to assume normality for these distributions, then what statistical procedure can be used to compare the three groups?
Perform the test mentioned in Problem 12.42 and report a p-value. How do your results compare with a parametric analysis of the data?
Relationship between protein concentration \((mg/mL)\) of duodenal secretions to pancreatic function as measured by trypsin secretion:
\(\left[U/\left(k\ \frac{g}{h}r\right)\right]\)
Tapsin secreton [UGA]
\(\leq\ 50\)
\(\begin{array}{|c|c|}\hline \text{Subject number} & \text{Protetion concentration} \\ \hline 1 & 1.7 \\ \hline 2 & 2.0 \\ \hline 3 & 2.0 \\ \hline 4 & 2.2 \\ \hline 5 & 4.0 \\ \hline 6 & 4.0 \\ \hline 7 & 5.0 \\ \hline 8 & 6.7 \\ \hline 9 & 7.8 \\ \hline \end{array}\)
\(51\ -\ 1000\)
\(\begin{array}{|c|c|}\hline \text{Subject number} & \text{Protetion concentration} \\ \hline 1 & 1.4 \\ \hline 2 & 2.4 \\ \hline 3 & 2.4 \\ \hline 4 & 3.3 \\ \hline 5 & 4.4 \\ \hline 6 & 4.7 \\ \hline 7 & 6.7 \\ \hline 8 & 7.9 \\ \hline 9 & 9.5 \\ \hline 10 & 11.7 \\ \hline \end{array}\)
\(>\ 1000\)
\(\begin{array}{|c|c|}\hline \text{Subject number} & \text{Protetion concentration} \\ \hline 1 & 2.9 \\ \hline 2 & 3.8 \\ \hline 3 & 4.4 \\ \hline 4 & 4.7 \\ \hline 5 & 5.5 \\ \hline 6 & 5.6 \\ \hline 7 & 7.4 \\ \hline 8 & 9.4 \\ \hline 9 & 10.3 \\ \hline \end{array}\)
asked 2021-02-18
For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. Observe the shape of the scatter diagram to determine whether the data is best described by an exponential, logarithmic, or logistic model. Then use the appropriate regression feature to find an equation that models the data. When necessary, round values to five decimal places.
\(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}{x}&{1}&{2}&{3}&{4}&{5}&{6}&{7}&{8}&{9}&{10}\backslash{h}{l}\in{e}{f{{\left({x}\right)}}}&{409.4}&{260.7}&{170.4}&{110.6}&{74}&{44.7}&{32.4}&{19.5}&{12.7}&{8.1}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)
asked 2021-02-25
Iron is very important for babies' growth. A common belief is that breastfeeding will help the baby to get more iron than formula feeding. To justify the belief, a study followed 2 groups of babies from born to 6 months. With one group babies are breast fed, and the other group are formula fed without iron supplements. Data below shows iron levels of those two groups of babies. \(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}{G}{r}{o}{u}{p}&{S}{a}\mp\le\ {s}{i}{z}{e}&{m}{e}{a}{n}&{S}{\tan{{d}}}{a}{r}{d}\ {d}{e}{v}{i}{a}{t}{i}{o}{n}\backslash{h}{l}\in{e}{B}{r}{e}\ast-{f}{e}{d}&{23}&{13.3}&{1.7}\backslash{h}{l}\in{e}{F}{\quad\text{or}\quad}\mu{l}{a}-{f}{e}{d}&{23}&{12.4}&{1.8}\backslash{h}{l}\in{e}{D}{I}{F}{F}={B}{r}{e}\ast-{F}{\quad\text{or}\quad}\mu{l}{a}&{23}&{0.9}&{1.4}\backslash{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\) (1) There are two groups we need to compare for the study: Breast-Fed and Formula- Fed. Are those two groups dependent or independent? Based on your answer, what inference procedure should we apply for this research? (2) Please perform the inference you decided in (1), and make sure to follow the 5-step procedure for any hypothesis test. (3) Based on your conclusion in (2), what kind of error could you make? Explain the type of error using the context words for this research
asked 2021-02-19
Make a scatterplot for each set of data. Tell whether the data show a linear association or a nonlinear association.
(1,2),(7,9.5),(4,7),(2,4.2),(6,8.25),(3,5.8),(5,8),(8,10),(0,0)
asked 2021-01-27
\(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}&{H}{o}{u}{s}{e}{w}{\quad\text{or}\quad}{k}{H}{o}{u}{r}{s}\backslash{h}{l}\in{e}{G}{e}{n}{d}{e}{r}&{S}{a}\mp\le\ {S}{i}{z}{e}&{M}{e}{a}{n}&{S}{\tan{{d}}}{a}{r}{d}\ {D}{e}{v}{i}{a}{t}{i}{o}{n}\backslash{h}{l}\in{e}{W}{o}{m}{e}{n}&{473473}&{33.133}{.1}&{14.214}{.2}\backslash{h}{l}\in{e}{M}{e}{n}&{488488}&{18.618}{.6}&{15.715}{.7}\backslash{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\) a. Based on this​ study, calculate how many more hours per​ week, on the​ average, women spend on housework than men. b. Find the standard error for comparing the means. What factor causes the standard error to be small compared to the sample standard deviations for the two​ groups? The cause the standard error to be small compared to the sample standard deviations for the two groups. c. Calculate the​ 95% confidence interval comparing the population means for women Interpret the result including the relevance of 0 being within the interval or not. The​ 95% confidence interval for ​\(\displaystyle{\left(\mu_{{W}}-\mu_{{M}}​\right)}\) is: (Round to two decimal places as​ needed.) The values in the​ 95% confidence interval are less than 0, are greater than 0, include 0, which implies that the population mean for women could be the same as is less than is greater than the population mean for men. d. State the assumptions upon which the interval in part c is based. Upon which assumptions below is the interval​ based? Select all that apply. A.The standard deviations of the two populations are approximately equal. B.The population distribution for each group is approximately normal. C.The samples from the two groups are independent. D.The samples from the two groups are random.
asked 2021-03-11
An automobile tire manufacturer collected the data in the table relating tire pressure x​ (in pounds per square​ inch) and mileage​ (in thousands of​ miles). A mathematical model for the data is given by
\(\displaystyle​ f{{\left({x}\right)}}=-{0.554}{x}^{2}+{35.5}{x}-{514}.\)
\(\begin{array}{|c|c|} \hline x & Mileage \\ \hline 28 & 45 \\ \hline 30 & 51\\ \hline 32 & 56\\ \hline 34 & 50\\ \hline 36 & 46\\ \hline \end{array}\)
​(A) Complete the table below.
\(\begin{array}{|c|c|} \hline x & Mileage & f(x) \\ \hline 28 & 45 \\ \hline 30 & 51\\ \hline 32 & 56\\ \hline 34 & 50\\ \hline 36 & 46\\ \hline \end{array}\)
​(Round to one decimal place as​ needed.)
\(A. 20602060xf(x)\)
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (28,45), (30,51), (32,56), (34,50), and (36,46). A parabola opens downward and passes through the points (28,45.7), (30,52.4), (32,54.7), (34,52.6), and (36,46.0). All points are approximate.
\(B. 20602060xf(x)\)
Acoordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2.
Data points are plotted at (43,30), (45,36), (47,41), (49,35), and (51,31). A parabola opens downward and passes through the points (43,30.7), (45,37.4), (47,39.7), (49,37.6), and (51,31). All points are approximate.
\(C. 20602060xf(x)\)
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (43,45), (45,51), (47,56), (49,50), and (51,46). A parabola opens downward and passes through the points (43,45.7), (45,52.4), (47,54.7), (49,52.6), and (51,46.0). All points are approximate.
\(D.20602060xf(x)\)
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (28,30), (30,36), (32,41), (34,35), and (36,31). A parabola opens downward and passes through the points (28,30.7), (30,37.4), (32,39.7), (34,37.6), and (36,31). All points are approximate.
​(C) Use the modeling function​ f(x) to estimate the mileage for a tire pressure of 29
\(\displaystyle​\frac{{{l}{b}{s}}}{{{s}{q}}}\in.\) and for 35
\(\displaystyle​\frac{{{l}{b}{s}}}{{{s}{q}}}\in.\)
The mileage for the tire pressure \(\displaystyle{29}\frac{{{l}{b}{s}}}{{{s}{q}}}\in.\) is
The mileage for the tire pressure \(\displaystyle{35}\frac{{{l}{b}{s}}}{{{s}{q}}}\) in. is
(Round to two decimal places as​ needed.)
(D) Write a brief description of the relationship between tire pressure and mileage.
A. As tire pressure​ increases, mileage decreases to a minimum at a certain tire​ pressure, then begins to increase.
B. As tire pressure​ increases, mileage decreases.
C. As tire pressure​ increases, mileage increases to a maximum at a certain tire​ pressure, then begins to decrease.
D. As tire pressure​ increases, mileage increases.
asked 2020-11-08
Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of \(\alpha = 0.05\). Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.) Lemons and Car Crashes Listed below are annual data for various years. The data are weights (metric tons) of lemons imported from Mexico and U.S. car crash fatality rates per 100,000 population [based on data from “The Trouble with QSAR (or How I Learned to Stop Worrying and Embrace Fallacy),” by Stephen Johnson, Journal of Chemical Information and Modeling, Vol. 48, No. 1]. Is there sufficient evidence to conclude that there is a linear correlation between weights of lemon imports from Mexico and U.S. car fatality rates? Do the results suggest that imported lemons cause car fatalities? \(\begin{matrix} \text{Lemon Imports} & 230 & 265 & 358 & 480 & 530\\ \text{Crashe Fatality Rate} & 15.9 & 15.7 & 15.4 & 15.3 & 14.9\\ \end{matrix}\)
asked 2020-11-23
The accompanying two-way table was constructed using data in the article “Television Viewing and Physical Fitness in Adults” (Research Quarterly for Exercise and Sport, 1990: 315–320). The author hoped to determine whether time spent watching television is associated with cardiovascular fitness. Subjects were asked about their television-viewing habits and were classified as physically fit if they scored in the excellent or very good category on a step test. We include MINITAB output from a chi-squared analysis. The four TV groups corresponded to different amounts of time per day spent watching TV (0, 1–2, 3–4, or 5 or more hours). The 168 individuals represented in the first column were those judged physically fit. Expected counts appear below observed counts, and MINITAB displays the contribution to \(\displaystyle{x}^{{{2}}}\) from each cell.
State and test the appropriate hypotheses using \(\displaystyle\alpha={0.05}\)
\(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}&{a}\mp,\ {1}&{a}\mp,\ {2}&{a}\mp,\ {T}{o}{t}{a}{l}\backslash{h}{l}\in{e}{1}&{a}\mp,\ {35}&{a}\mp,\ {147}&{a}\mp,\ {182}\backslash{h}{l}\in{e}&{a}\mp,\ {25.48}&{a}\mp,\ {156.52}&{a}\mp,\backslash{h}{l}\in{e}{2}&{a}\mp,\ {101}&{a}\mp,\ {629}&{a}\mp,\ {730}\backslash{h}{l}\in{e}&{a}\mp,\ {102.20}&{a}\mp,\ {627.80}&{a}\mp,\backslash{h}{l}\in{e}{3}&{a}\mp,\ {28}&{a}\mp,\ {222}&{a}\mp,\ {250}\backslash{h}{l}\in{e}&{a}\mp,\ {35.00}&{a}\mp,\ {215.00}&{a}\mp,\backslash{h}{l}\in{e}{4}&{a}\mp,\ {4}&{a}\mp,\ {34}&{a}\mp,\ {38}\backslash{h}{l}\in{e}&{a}\mp,\ {5.32}&{a}\mp,\ {32.68}&{a}\mp,\backslash{h}{l}\in{e}{T}{o}{t}{a}{l}&{a}\mp,\ {168}&{a}\mp,\ {1032}&{a}\mp,\ {1200}\backslash{h}{l}\in{e}\)
\(\displaystyle{C}{h}{i}{s}{q}={a}\mp,\ {3.557}\ +\ {0.579}\ +\ {a}\mp,\ {0.014}\ +\ {0.002}\ +\ {a}\mp,\ {1.400}\ +\ {0.228}\ +\ {a}\mp,\ {0.328}\ +\ {0.053}={6.161}\)
\(\displaystyle{d}{f}={3}\)
...