1)What factors influence the correspondence between the binomial and normal distributions? 1.Twenty percent of individuals who seek psychotherapy will

nagasenaz 2021-03-02 Answered
1)What factors influence the correspondence between the binomial and normal distributions? 1.Twenty percent of individuals who seek psychotherapy will recover from their symptoms irrespective of whether they receive treatment. A research finds that a particular type of psychotherapy is successful with 30 out of 100 clients. Using an alpha level of 0.05 as a criterion, what should she conclude about the effectiveness of this psychotherapeutic approach? 2.How does the size of the data set help cut down on the size of the error terms in the approximation process?

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

SabadisO
Answered 2021-03-03 Author has 17309 answers

1) Binomial approximation: The normal distribution can be used as an approximation to the binomial distribution, under certain circumstances, namely: If \(\displaystyle{X}\sim{B}{\left({n},{p}\right)}\) and if n is large and/or p is close to
\(^1/_2\), then X is approximately N \((np, npq)\) (where \(q = 1 - p\)). Continuity Correction: The binomial is a discrete random variables, whereas the normal distribution is continuous. We need to take this into account when we are using the normal distribution to approximate a binomial using a continuity correction. Continuity correction factor table: If \(\displaystyle{P}{\left({X}={n}\right)}\ {u}{s}{e}\ {P}{\left({n}–{0.5}{<}{X}{<}{n}+{0.5}\right)}\)

If \(\displaystyle{P}{\left({X}{>}{n}\right)}\ {u}{s}{e}\ {P}{\left({X}{>}{n}+{0.5}\right)}\)

If \(\displaystyle{P}{\left({X}\leq{n}\right)}\ {u}{s}{e}\ {P}{\left({X}{<}{n}+{0.5}\right)}\)

If \(\displaystyle{P}{\left({X}{<}{n}\right)}\ {u}{s}{e}\ {P}{\left({X}{<}{n}–{0.5}\right)}\)

If \(\displaystyle{P}{\left({X}\geq{n}\right)}\ {u}{s}{e}\ {P}{\left({X}{>}{n}–{0.5}\right)}\)

Continuous normal distribution can be used as an approximation to binomial distribution, the modification is known as continuity correction.

Have a similar question?
Ask An Expert
3
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-10-09
1.What factors influence the correspondence between the binomial and normal distributions?
2.Twenty percent of individuals who seek psychotherapy will recover from their symptoms irrespective of whether they receive treatment. A research finds that a particular type of psychotherapy is successful with 30 out of 100 clients. Using an alpha level of 0.05 as a criterion, what should she conclude about the effectiveness of this psychotherapeutic approach?
3.How does the size of the data set help cut down on the size of the error terms in the approximation process?
asked 2021-06-10
Here’s an interesting challenge you can give to a friend. Hold a $1 (or larger!) bill by an upper corner. Have a friend prepare to pinch a lower corner, putting her fingers near but not touching the bill. Tell her to try to catch the bill when you drop it by simply closing her fingers. This seems like it should be easy, but it’s not. After she sees that you have released the bill, it will take her about 0.25 s to react and close her fingers-which is not fast enough to catch the bill. How much time does it take for the bill to fall beyond her grasp? The length of a bill is 16 cm.
asked 2021-05-14
When σ is unknown and the sample size is \(\displaystyle{n}\geq{30}\), there are tow methods for computing confidence intervals for μμ. Method 1: Use the Student's t distribution with d.f. = n - 1. This is the method used in the text. It is widely employed in statistical studies. Also, most statistical software packages use this method. Method 2: When \(\displaystyle{n}\geq{30}\), use the sample standard deviation s as an estimate for σσ, and then use the standard normal distribution. This method is based on the fact that for large samples, s is a fairly good approximation for σσ. Also, for large n, the critical values for the Student's t distribution approach those of the standard normal distribution. Consider a random sample of size n = 31, with sample mean x¯=45.2 and sample standard deviation s = 5.3. (c) Compare intervals for the two methods. Would you say that confidence intervals using a Student's t distribution are more conservative in the sense that they tend to be longer than intervals based on the standard normal distribution?
asked 2020-10-23
1. Find each of the requested values for a population with a mean of \(? = 40\), and a standard deviation of \(? = 8\) A. What is the z-score corresponding to \(X = 52?\) B. What is the X value corresponding to \(z = - 0.50?\) C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores? E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\) 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\). 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.
asked 2020-11-08
Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of \(\alpha = 0.05\). Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.) Lemons and Car Crashes Listed below are annual data for various years. The data are weights (metric tons) of lemons imported from Mexico and U.S. car crash fatality rates per 100,000 population [based on data from “The Trouble with QSAR (or How I Learned to Stop Worrying and Embrace Fallacy),” by Stephen Johnson, Journal of Chemical Information and Modeling, Vol. 48, No. 1]. Is there sufficient evidence to conclude that there is a linear correlation between weights of lemon imports from Mexico and U.S. car fatality rates? Do the results suggest that imported lemons cause car fatalities? \(\begin{matrix} \text{Lemon Imports} & 230 & 265 & 358 & 480 & 530\\ \text{Crashe Fatality Rate} & 15.9 & 15.7 & 15.4 & 15.3 & 14.9\\ \end{matrix}\)
asked 2021-08-02
A club at school decided to help the homeless this year. Last month, the club got people to donate 879 blankets it can give to homeless people and families who need to stay warm. It gives about 150 blankets away each week. Write an equation modeling how many blankets it will have left over time.
asked 2021-02-25
Give a full and correct answer Why is it important that a sample be random and representative when conducting hypothesis testing? Representative Sample vs. Random Sample: An Overview Economists and researchers seek to reduce sampling bias to near negligible levels when employing statistical analysis. Three basic characteristics in a sample reduce the chances of sampling bias and allow economists to make more confident inferences about a general population from the results obtained from the sample analysis or study: * Such samples must be representative of the chosen population studied. * They must be randomly chosen, meaning that each member of the larger population has an equal chance of being chosen. * They must be large enough so as not to skew the results. The optimal size of the sample group depends on the precise degree of confidence required for making an inference. Representative sampling and random sampling are two techniques used to help ensure data is free of bias. These sampling techniques are not mutually exclusive and, in fact, they are often used in tandem to reduce the degree of sampling error in an analysis and allow for greater confidence in making statistical inferences from the sample in regard to the larger group. Representative Sample A representative sample is a group or set chosen from a larger statistical population or group of factors or instances that adequately replicates the larger group according to whatever characteristic or quality is under study. A representative sample parallels key variables and characteristics of the large society under examination. Some examples include sex, age, education level, socioeconomic status (SES), or marital status. A larger sample size reduced sampling error and increases the likelihood that the sample accurately reflects the target population. Random Sample A random sample is a group or set chosen from a larger population or group of factors of instances in a random manner that allows for each member of the larger group to have an equal chance of being chosen. A random sample is meant to be an unbiased representation of the larger population. It is considered a fair way to select a sample from a larger population since every member of the population has an equal chance of getting selected. Special Considerations: People collecting samples need to ensure that bias is minimized. Representative sampling is one of the key methods of achieving this because such samples replicate as closely as possible elements of the larger population under study. This alone, however, is not enough to make the sampling bias negligible. Combining the random sampling technique with the representative sampling method reduces bias further because no specific member of the representative population has a greater chance of selection into the sample than any other. Summarize this article in 250 words.
...