Listed below are amounts of strontium-90 (in millibecquerels or mBq per gram of calclum) in a simple random sample of baby teth obtained from resident of state A and state B. Use a 0.05 significance level to test the celm that amounts of Strontium-90 from state A residents vary more than amounts from state B resints. Assume that both samples are independent simple random samples from populations having normal distributions. begin{array}{c}State A: & 162 & 143 & 150 & 130 & 152 & 152 & 143 & 155 & 131 & 139 & 164 State B: & 136 & 140 & 142 & 131 & 133 & 129 & 141 & 140 & 142 & 136 & 142end{array}

Question
Modeling data distributions
asked 2020-10-26
Listed below are amounts of strontium-90 (in millibecquerels or mBq per gram of calclum) in a simple random sample of baby teth obtained from resident of state A and state B. Use a 0.05 significance level to test the celm that amounts of Strontium-90 from state A residents vary more than amounts from state B resints. Assume that both samples are independent simple random samples from populations having normal distributions. \(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{S}{t}{a}{t}{e}{A}:&{162}&{143}&{150}&{130}&{152}&{152}&{143}&{155}&{131}&{139}&{164}\backslash{S}{t}{a}{t}{e}{B}:&{136}&{140}&{142}&{131}&{133}&{129}&{141}&{140}&{142}&{136}&{142}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)

Answers (1)

2020-10-27
Null Hypothesis: \(\displaystyle{H}_{{0}}:\) There is no sufficient evidence that the state A residents vary more than amounts from state B residents. Alternative Hypothesis: \(\displaystyle{H}_{{0}}:\) There is a sufficient evidence that the state A residents vary more than amounts from state B residents. Test statistic: Excel Procedure: Enter the data for ‘State A’ and ‘State B’ in Excel sheet>Data>Data Analysis>F test two-samples for variances’ and click on ‘OK’>Select the column of ‘State A’ under ‘Variable 1 Range’>Select the column of ‘State B’ under ‘Variable 2 Range’>Click on ‘OK’. Exel Output: \(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{F}-{t}{e}{s}{t}\ {t}{w}{o}-{S}{a}\mp\le\ {f}{\quad\text{or}\quad}\ {V}{a}{r}{i}{a}{n}{c}{e}{s}\backslash{h}{l}\in{e}\backslash&{S}{t}{a}{t}{e}{A}&{S}{t}{a}{t}{e}{B}\backslash{h}{l}\in{e}{M}{e}{a}{n}&{147.5833333}&{136.75}\backslash{V}{a}{r}{i}{a}{n}{c}{e}&{116.6287879}&{26.38636364}\backslash{O}{b}{s}{e}{r}{v}{a}{t}{i}{o}{n}{s}&{12}&{12}\backslash{d}{f}&{11}&{11}\backslash{F}&{4.420040195}&\backslash{p}{\left({F}\Leftarrow{f}\right)}{o}\ne-{t}{a}{i}{l}&{0.010391966}&\backslash{F}{C}{r}{i}{t}{i}{c}{a}{l}{o}\ne-{t}{a}{i}{l}&{2.81793047}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\) From the output, F = 4,42 P value = 0.10 Decision Rule: If P-value \(\displaystyle\leq\alpha\), then reject the null hypothesis. Conclusion: Let consider the level of significance is \(\displaystyle\alpha={0.05}\) Here, the p-value is less than the level of significance. From the rejection rule, reject the null hypothesis. Conclusion: There is a sufficient evidence that the state A residents vary more than amounts from state B residents.
0

Relevant Questions

asked 2020-10-23
A random sample of \(\displaystyle{n}_{{1}}={16}\) communities in western Kansas gave the following information for people under 25 years of age.
\(\displaystyle{X}_{{1}}:\) Rate of hay fever per 1000 population for people under 25
\(\begin{array}{|c|c|} \hline 97 & 91 & 121 & 129 & 94 & 123 & 112 &93\\ \hline 125 & 95 & 125 & 117 & 97 & 122 & 127 & 88 \\ \hline \end{array}\)
A random sample of \(\displaystyle{n}_{{2}}={14}\) regions in western Kansas gave the following information for people over 50 years old.
\(\displaystyle{X}_{{2}}:\) Rate of hay fever per 1000 population for people over 50
\(\begin{array}{|c|c|} \hline 94 & 109 & 99 & 95 & 113 & 88 & 110\\ \hline 79 & 115 & 100 & 89 & 114 & 85 & 96\\ \hline \end{array}\)
(i) Use a calculator to calculate \(\displaystyle\overline{{x}}_{{1}},{s}_{{1}},\overline{{x}}_{{2}},{\quad\text{and}\quad}{s}_{{2}}.\) (Round your answers to two decimal places.)
(ii) Assume that the hay fever rate in each age group has an approximately normal distribution. Do the data indicate that the age group over 50 has a lower rate of hay fever? Use \(\displaystyle\alpha={0.05}.\)
(a) What is the level of significance?
State the null and alternate hypotheses.
\(\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}<\mu_{{2}}\)
\(\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}>\mu_{{2}}\)
\(\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}\ne\mu_{{2}}\)
\(\displaystyle{H}_{{0}}:\mu_{{1}}>\mu_{{2}},{H}_{{1}}:\mu_{{1}}=\mu_{{12}}\)
(b) What sampling distribution will you use? What assumptions are you making?
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations,
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations,
The Student's t. We assume that both population distributions are approximately normal with known standard deviations,
What is the value of the sample test statistic? (Test the difference \(\displaystyle\mu_{{1}}-\mu_{{2}}\). Round your answer to three decimalplaces.)
What is the value of the sample test statistic? (Test the difference \(\displaystyle\mu_{{1}}-\mu_{{2}}\). Round your answer to three decimal places.)
(c) Find (or estimate) the P-value.
P-value \(\displaystyle>{0.250}\)
\(\displaystyle{0.125}<{P}-\text{value}<{0},{250}\)
\(\displaystyle{0},{050}<{P}-\text{value}<{0},{125}\)
\(\displaystyle{0},{025}<{P}-\text{value}<{0},{050}\)
\(\displaystyle{0},{005}<{P}-\text{value}<{0},{025}\)
P-value \(\displaystyle<{0.005}\)
Sketch the sampling distribution and show the area corresponding to the P-value.
P.vaiue Pevgiue
P-value f P-value
asked 2021-01-17
A new thermostat has been engineered for the frozen food cases in large supermarkets. Both the old and new thermostats hold temperatures at an average of \(25^{\circ}F\). However, it is hoped that the new thermostat might be more dependable in the sense that it will hold temperatures closer to \(25^{\circ}F\). One frozen food case was equipped with the new thermostat, and a random sample of 21 temperature readings gave a sample variance of 5.1. Another similar frozen food case was equipped with the old thermostat, and a random sample of 19 temperature readings gave a sample variance of 12.8. Test the claim that the population variance of the old thermostat temperature readings is larger than that for the new thermostat. Use a \(5\%\) level of significance. How could your test conclusion relate to the question regarding the dependability of the temperature readings? (Let population 1 refer to data from the old thermostat.)
(a) What is the level of significance?
State the null and alternate hypotheses.
\(H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}\)
(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)
What are the degrees of freedom?
\(df_{N} = ?\)
\(df_{D} = ?\)
What assumptions are you making about the original distribution?
The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.
(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?
At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
(e) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.
asked 2021-01-27
\(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}&{H}{o}{u}{s}{e}{w}{\quad\text{or}\quad}{k}{H}{o}{u}{r}{s}\backslash{h}{l}\in{e}{G}{e}{n}{d}{e}{r}&{S}{a}\mp\le\ {S}{i}{z}{e}&{M}{e}{a}{n}&{S}{\tan{{d}}}{a}{r}{d}\ {D}{e}{v}{i}{a}{t}{i}{o}{n}\backslash{h}{l}\in{e}{W}{o}{m}{e}{n}&{473473}&{33.133}{.1}&{14.214}{.2}\backslash{h}{l}\in{e}{M}{e}{n}&{488488}&{18.618}{.6}&{15.715}{.7}\backslash{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\) a. Based on this​ study, calculate how many more hours per​ week, on the​ average, women spend on housework than men. b. Find the standard error for comparing the means. What factor causes the standard error to be small compared to the sample standard deviations for the two​ groups? The cause the standard error to be small compared to the sample standard deviations for the two groups. c. Calculate the​ 95% confidence interval comparing the population means for women Interpret the result including the relevance of 0 being within the interval or not. The​ 95% confidence interval for ​\(\displaystyle{\left(\mu_{{W}}-\mu_{{M}}​\right)}\) is: (Round to two decimal places as​ needed.) The values in the​ 95% confidence interval are less than 0, are greater than 0, include 0, which implies that the population mean for women could be the same as is less than is greater than the population mean for men. d. State the assumptions upon which the interval in part c is based. Upon which assumptions below is the interval​ based? Select all that apply. A.The standard deviations of the two populations are approximately equal. B.The population distribution for each group is approximately normal. C.The samples from the two groups are independent. D.The samples from the two groups are random.
asked 2020-10-23
1. Find each of the requested values for a population with a mean of \(? = 40\), and a standard deviation of \(? = 8\) A. What is the z-score corresponding to \(X = 52?\) B. What is the X value corresponding to \(z = - 0.50?\) C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores? E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\) 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\). 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.
asked 2021-02-06
At what age do babies learn to crawl? Does it take longer to learn in the winter when babies are often bundled in clothes that restrict their movement? Data were collected from parents who brought their babies into the University of Denver Infant Study Center to participate in one of a number of experiments between 1988 and 1991. Parents reported the birth month and the age at which their child was first able to creep or crawl a distance of 4 feet within 1 minute. The resulting data were grouped by month of birth: January, May, and September: \(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}&{C}{r}{a}{w}{l}\in{g}\ {a}\ge\backslash{h}{l}\in{e}{B}{i}{r}{t}{h}\ {m}{o}{n}{t}{h}&{M}{e}{a}{n}&{S}{t}.{d}{e}{v}.&{n}\backslash{h}{l}\in{e}{J}{a}\nu{a}{r}{y}&{29.84}&{7.08}&{32}\backslash{M}{a}{y}&{28.58}&{8.07}&{27}\backslash{S}{e}{p}{t}{e}{m}{b}{e}{r}&{33.83}&{6.93}&{38}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\) Crawling age is given in weeks. Assume the data represent three independent simple random samples, one from each of the three populations consisting of babies born in that particular month, and that the populations of crawling ages have Normal distributions. A partial ANOVA table is given below. \(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{S}{o}{u}{r}{c}{e}&{S}{u}{m}\ {o}{f}\ \boxempty{s}&{D}{F}&{M}{e}{a}{n}\ \boxempty\ {F}\backslash{h}{l}\in{e}{G}{r}{o}{u}{p}{s}&{505.26}\backslash{E}{r}{r}{\quad\text{or}\quad}&&&{53.45}\backslash{T}{o}{t}{a}{l}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\) What are the degrees of freedom for the groups term?
asked 2020-12-07
Would you rather spend more federal taxes on art? Of a random sample of \(n_{1} = 86\) politically conservative voters, \(r_{1} = 18\) responded yes. Another random sample of \(n_{2} = 85\) politically moderate voters showed that \(r_{2} = 21\) responded yes. Does this information indicate that the population proportion of conservative voters inclined to spend more federal tax money on funding the arts is less than the proportion of moderate voters so inclined? Use \(\alpha = 0.05.\) (a) State the null and alternate hypotheses. \(H_0:p_{1} = p_{2}, H_{1}:p_{1} > p_2\)
\(H_0:p_{1} = p_{2}, H_{1}:p_{1} < p_2\)
\(H_0:p_{1} = p_{2}, H_{1}:p_{1} \neq p_2\)
\(H_{0}:p_{1} < p_{2}, H_{1}:p_{1} = p_{2}\) (b) What sampling distribution will you use? What assumptions are you making? The Student's t. The number of trials is sufficiently large. The standard normal. The number of trials is sufficiently large.The standard normal. We assume the population distributions are approximately normal. The Student's t. We assume the population distributions are approximately normal. (c)What is the value of the sample test statistic? (Test the difference \(p_{1} - p_{2}\). Do not use rounded values. Round your final answer to two decimal places.) (d) Find (or estimate) the P-value. (Round your answer to four decimal places.) (e) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level alpha? At the \(\alpha = 0.05\) level, we reject the null hypothesis and conclude the data are statistically significant. At the \(\alpha = 0.05\) level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the \(\alpha = 0.05\) level, we fail to reject the null hypothesis and conclude the data are not statistically significant. At the \(\alpha = 0.05\) level, we reject the null hypothesis and conclude the data are not statistically significant. (f) Interpret your conclusion in the context of the application. Reject the null hypothesis, there is sufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Fail to reject the null hypothesis, there is sufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Fail to reject the null hypothesis, there is insufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Reject the null hypothesis, there is insufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters.
asked 2020-11-08
Are yields for organic farming different from conventional farming yields? Independent random samples from method A (organic farming) and method B (conventional farming) gave the following information about yield of sweet corn (in tons/acre). \(\text{Method} A: 6.51, 7.02, 6.81, 7.27, 6.73, 6.11, 6.17, 5.88, 6.69, 7.12, 5.74, 6.90.\)
\(\text{Method} B: 7.32, 7.01, 6.66, 6.85, 5.78, 6.48, 5.95, 6.31, 6.50, 5.93, 6.68.\) Use a 5% level of significance to test the claim that there is no difference between the yield distributions. (a) What is the level of significance? (b) Compute the sample test statistic. (Round your answer to two decimal places.) (c) Find the P-value of the sample test statistic. (Round your answer to four decimal places.)
asked 2021-02-09
A two-sample inference deals with dependent and independent inferences. In a two-sample hypothesis testing problem, underlying parameters of two different populations are compared. In a longitudinal (or follow-up) study, the same group of people is followed over time. Two samples are said to be paired when each data point in the first sample is matched and related to a unique data point in the second sample.
This problem demonstrates inference from two dependent (follow-up) samples using the data from the hypothetical study of new cases of tuberculosis (TB) before and after the vaccination was done in several geographical areas in a country in sub-Saharan Africa. Conclusion about the null hypothesis is to note the difference between samples.
The problem that demonstrates inference from two dependent samples uses hypothetical data from the TB vaccinations and the number of new cases before and after vaccination. PSK\begin{array}{|c|c|} \hline Geographical\ regions & Before\ vaccination & After\ vaccination\\ \hline 1 & 85 & 11\\ \hline 2 & 77 & 5\\ \hline 3 & 110 & 14\\ \hline 4 & 65 & 12\\ \hline 5 & 81 & 10\\\hline 6 & 70 & 7\\ \hline 7 & 74 & 8\\ \hline 8 & 84 & 11\\ \hline 9 & 90 & 9\\ \hline 10 & 95 & 8\\ \hline \end{array}ZSK
Using the Minitab statistical analysis program to enter the data and perform the analysis, complete the following: Construct a one-sided \(\displaystyle{95}\%\) confidence interval for the true difference in population means. Test the null hypothesis that the population means are identical at the 0.05 level of significance.
asked 2020-11-08
Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of \(\alpha = 0.05\). Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.) Lemons and Car Crashes Listed below are annual data for various years. The data are weights (metric tons) of lemons imported from Mexico and U.S. car crash fatality rates per 100,000 population [based on data from “The Trouble with QSAR (or How I Learned to Stop Worrying and Embrace Fallacy),” by Stephen Johnson, Journal of Chemical Information and Modeling, Vol. 48, No. 1]. Is there sufficient evidence to conclude that there is a linear correlation between weights of lemon imports from Mexico and U.S. car fatality rates? Do the results suggest that imported lemons cause car fatalities? \(\begin{matrix} \text{Lemon Imports} & 230 & 265 & 358 & 480 & 530\\ \text{Crashe Fatality Rate} & 15.9 & 15.7 & 15.4 & 15.3 & 14.9\\ \end{matrix}\)
asked 2020-12-07
Hypothesis Testing Review
For each problem below, simply identify the null and alternative hypotheses. Use appropriate notation/symbols. You do not have to run any hypothesis tests, although it's good practice and I'll post answers for all of them.
1) A simple random sample of 44 men from a normally distributed population results in a standard deviation of 10.7 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.10 significance level to test the claim that pulse rates of men have a standard deviation equal to 10 beats per minute.
2) In 1997, a survey of 880 households showed that 145 of them use e-mail. Use those sample results to test the claim that more than 15% of households use e-mail. Use a 0.05 significance level.
...