Given: \(\displaystyle{y}={3}{e}^{{-{0.75}{x}}}\) Exponential decay Step 2

asked 2021-05-05

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

\(\displaystyle{y}={3}{e}^{{-{0.75}{x}}}\)

\(\displaystyle{y}={3}{e}^{{-{0.75}{x}}}\)

asked 2021-06-15

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

\(\displaystyle{y}={3}{e}^{{-{{x}}}}\)

\(\displaystyle{y}={3}{e}^{{-{{x}}}}\)

asked 2021-06-11

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

\(\displaystyle{y}={3}{e}^{{{2}{x}}}\)

\(\displaystyle{y}={3}{e}^{{{2}{x}}}\)

asked 2021-05-23

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

\(\displaystyle{y}={e}^{{-{{3}}}}{x}\)

\(\displaystyle{y}={e}^{{-{{3}}}}{x}\)

asked 2021-06-09

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

\(\displaystyle{f{{\left({x}\right)}}}={\left({0.25}\right)}^{{x}}\)

\(\displaystyle{f{{\left({x}\right)}}}={\left({0.25}\right)}^{{x}}\)

asked 2021-05-12

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

\(\displaystyle{f{{\left({x}\right)}}}={\left({1.5}\right)}^{{x}}\)

\(\displaystyle{f{{\left({x}\right)}}}={\left({1.5}\right)}^{{x}}\)

asked 2021-06-08

Tell whether the function represents exponential growth or exponential decay. Identify the growth or decay factor.

\(\displaystyle{f{{\left({x}\right)}}}={7}\cdot{0.32}^{{x}}\)

\(\displaystyle{f{{\left({x}\right)}}}={7}\cdot{0.32}^{{x}}\)

asked 2021-06-20

Tell whether each function represents exponential growth, exponential decay, or neither. Justify your responses.

x0123 y260118176

x0123 y260118176

asked 2021-05-09

Tell whether the function represents exponential growth or exponential decay. \(\displaystyle{f{{\left({x}\right)}}}=\frac{{3}}{{5}}{\left(\frac{{5}}{{4}}\right)}^{{x}}\)

asked 2021-05-17

Tell whether the function represents exponential growth or exponential decay.

\(\displaystyle{f{{\left({x}\right)}}}=\frac{{2}}{{7}}\cdot{4}^{{x}}\)

\(\displaystyle{f{{\left({x}\right)}}}=\frac{{2}}{{7}}\cdot{4}^{{x}}\)