# Compute <mrow> 4 t </mrow> <mrow> 5 <mroot> <mrow

Compute $\int \frac{4t}{5\sqrt[3]{2t+3}}dt$.
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Darion Sexton

Since $\frac{4}{5}$ is constant with respect to $t$, move $\frac{4}{5}$ out of the integral.

$\frac{4}{5}\int \frac{t}{\sqrt[3]{2t+3}}dt$

Let $u=2t+3$. Then $du=2dt$, so $\frac{1}{2}du=dt$. Rewrite using $u$ and $d$$u$.

$\frac{4}{5}\int \frac{\frac{u}{2}-\frac{3}{2}}{\sqrt[3]{u}}\cdot \frac{1}{2}du$

Simplify.

$\frac{4}{5}\int \frac{u-3}{4\sqrt[3]{u}}du$

Since $\frac{1}{4}$ is constant with respect to $u$, move $\frac{1}{4}$ out of the integral.

$\frac{4}{5}\left(\frac{1}{4}\int \frac{u-3}{\sqrt[3]{u}}du\right)$

Simplify the expression.

$\frac{1}{5}\int \left(u-3\right){u}^{-\frac{1}{3}}du$

Expand $\left(u-3\right){u}^{-\frac{1}{3}}$.

$\frac{1}{5}\int {u}^{\frac{2}{3}}-3{u}^{-\frac{1}{3}}du$

Split the single integral into multiple integrals.

$\frac{1}{5}\left(\int {u}^{\frac{2}{3}}du+\int -3{u}^{-\frac{1}{3}}du\right)$

By the Power Rule, the integral of ${u}^{\frac{2}{3}}$ with respect to $u$ is $\frac{3}{5}{u}^{\frac{5}{3}}$.

$\frac{1}{5}\left(\frac{3}{5}{u}^{\frac{5}{3}}+C+\int -3{u}^{-\frac{1}{3}}du\right)$

Since $-3$ is constant with respect to $u$, move $-3$ out of the integral.

$\frac{1}{5}\left(\frac{3}{5}{u}^{\frac{5}{3}}+C-3\int {u}^{-\frac{1}{3}}du\right)$

By the Power Rule, the integral of ${u}^{-\frac{1}{3}}$ with respect to $u$ is $\frac{3}{2}{u}^{\frac{2}{3}}$.

$\frac{1}{5}\left(\frac{3}{5}{u}^{\frac{5}{3}}+C-3\left(\frac{3}{2}{u}^{\frac{2}{3}}+C\right)\right)$

Simplify.

$\frac{1}{5}\left(\frac{3{u}^{\frac{5}{3}}}{5}-\frac{9{u}^{\frac{2}{3}}}{2}\right)+C$

Replace all occurrences of $u$ with $2t+3$.

$\frac{1}{5}\left(\frac{3{\left(2t+3\right)}^{\frac{5}{3}}}{5}-\frac{9{\left(2t+3\right)}^{\frac{2}{3}}}{2}\right)+C$

Simplify.

$\frac{3{\left(2t+3\right)}^{\frac{2}{3}}\left(4t-9\right)}{50}+C$