Consider the bases B = left(begin{array}{c}begin{bmatrix}2 3 end{bmatrix}, begin{bmatrix}3 5 end{bmatrix}end{array}right) of R^2 and C = left(begin{array}{c}begin{bmatrix}1 1 0 end{bmatrix}, begin{bmatrix}10 1 end{bmatrix}end{array}, begin{bmatrix}0 11 end{bmatrix}right) of R^3. and the linear maps S in L (R^2, R^3) and T in L(R^3, R^2) given given (with respect to the standard bases) by [S]_{E, E} = begin{bmatrix}2 & -1 5 & -3 -3 & 2 end{bmatrix} and [T]_{E, E} = begin{bmatrix}1 & -1 & 1 1 & 1 & -1 end{bmatrix} Find each of the following coordinate representations. (b)[S]_{E, C} (c)[S]_{B, C}

Question
Alternate coordinate systems
asked 2020-11-14
Consider the bases \(\displaystyle{B}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}\backslash{5}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}{o}{f}{R}^{{2}}{\quad\text{and}\quad}{C}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}{o}{f}{R}^{{3}}\).
and the linear maps PSKS \in L (R^2, R^3) and T \in L(R^3, R^2) given given (with respect to the standard bases) by \(\displaystyle{\left[{S}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}&-{1}\backslash{5}&-{3}\backslash-{3}&{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{\quad\text{and}\quad}{\left[{T}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&-{1}&{1}\backslash{1}&{1}&-{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) Find each of the following coordinate representations. \(\displaystyle{\left({b}\right)}{\left[{S}\right]}_{{{E},{C}}}\)
\(\displaystyle{\left({c}\right)}{\left[{S}\right]}_{{{B},{C}}}\)

Answers (1)

2020-11-15
\(\displaystyle{B}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}\backslash{5}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}{o}{f}{R}^{{2}},{C}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}{o}{f}{R}^{{3}}\).
PSKS \in L (R^2, R^3) , T \in L(R^3, R^2) \(\displaystyle{\left[{S}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}&-{1}\backslash{5}&-{3}\backslash-{3}&{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{\left[{T}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&-{1}&{1}\backslash{1}&{1}&-{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) (b) To find \(\displaystyle{\left[{S}\right]}_{{{E},{C}}}:\)
\(\displaystyle{S}{\left({b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{5}\backslash-{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}={a}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}+{b}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}+{c}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{a}+{b}\backslash{a}+{c}\backslash{b}+{c}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\)
\(\displaystyle\therefore{a}+{b}={2},{a}+{c}={5},{b}+{c}=-{3}\)
\(\displaystyle{b}={2}-{a}\Rightarrow{b}+{c}={2}-{a}+{c}=-{3}\Rightarrow-{a}+{c}=-{5}\)
\(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\mathcal}\right\rbrace}\therefore{a}+{c}={5}\backslash+-{a}+{c}=-{5}\backslash{h}{l}\in{e}{2}{c}={0}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\mathcal}\right\rbrace}\Rightarrow{c}={0},{b}=-{3},{a}={5}\backslash\Rightarrow{a}={5},{b}=-{3},{c}={0}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)
\(\displaystyle{S}{\left({b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}-{1}\backslash-{3}\backslash{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}={a}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}+{b}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}+{c}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{a}+{b}\backslash{a}+{c}\backslash{b}+{c}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\)
\(\displaystyle\therefore{a}+{b}=-{1},{a}+{c}=-{3},{b}+{c}={2}\)
\(\displaystyle\therefore{b}=-{1}-{a}\Rightarrow{b}+{c}=-{1}-{a}+{c}={2}\Rightarrow-{a}+{c}={3}\)
\(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\mathcal}\right\rbrace}\therefore{a}+{c}=-{3}\backslash+-{a}+{c}={3}\backslash{h}{l}\in{e}{2}{c}={0}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\mathcal}\right\rbrace}\Rightarrow{c}={0},{a}=-{3},{b}={2}\backslash\Rightarrow{a}=-{3},{b}={2},{c}={0}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)
\(\displaystyle\therefore{\left[{S}\right]}_{{{E},{C}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{5}&-{3}\backslash-{3}&{2}\backslash{0}&{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) c) To find \(\displaystyle{\left[{S}\right]}_{{{B},{C}}}\)
\(\displaystyle{S}{\left({b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{\quad\text{and}\quad}{S}{\left({b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}\backslash{5}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}..{\left({b}{y}{\left({a}\right)}\right)}\)
\(\displaystyle\therefore{S}{\left({b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}={1}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}+{0}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}+{0}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\)
\(\displaystyle{S}{\left({b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}\backslash{5}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}={0}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}+{1}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}+{0}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\)
\(\displaystyle{\left[{S}\right]}_{{{B},{C}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&{0}\backslash{0}&{1}\backslash{0}&{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\)
0

Relevant Questions

asked 2021-02-25
Consider the bases \(\displaystyle{B}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}\backslash{5}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}{o}{f}{R}^{{2}}{\quad\text{and}\quad}{C}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}{o}{f}{R}^{{3}}\).
and the linear maps PSKS \in L (R^2, R^3) and T \in L(R^3, R^2) given given (with respect to the standard bases) by \(\displaystyle{\left[{S}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}&-{1}\backslash{5}&-{3}\backslash-{3}&{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{\quad\text{and}\quad}{\left[{T}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&-{1}&{1}\backslash{1}&{1}&-{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) Find each of the following coordinate representations. \(\displaystyle{\left({a}\right)}{\left[{S}\right]}_{{{B},{E}}}\)
asked 2020-11-10
Consider the following linear transformation T : P_2 \rightarrow P_3, given by T(f) = 3x^2 f'. That is, take the first derivative and then multiply by 3x^2 (a) Find the matrix for T with respect to the standard bases of P_n: that is, find [T]_{\epsilon}^{\epsilon}, where- \epsilon = {1, x, x^2 , x^n) (b) Find N(T) and R(T). You can either work with polynomials or with their coordinate vectors with respect to the standard basis. Write the answers as spans of polynomials. (c) Find the the matrix for T with respect to the alternate bases: [T]_A^B where A = {x - 1, x, x^2 + 1}, B = {x^3, x, x^2, 1}.
asked 2020-10-18
Given the elow bases for R^2 and the point at the specified coordinate in the standard basis as below, (40 points) \(\displaystyle{B}{1}=\le{f}{t}{\left\lbrace{\left({1},{0}\right)},{\left({0},{1}\right)}{r}{i}{g}{h}{t}\right\rbrace}&{M}{S}{K}{B}{2}={\left({1},{2}\right)},{\left({2},-{1}\right)}{r}{i}{g}{h}{t}\rbrace{\left({1},{7}\right)}={3}^{\cdot}{\left({1},{2}\right)}-{\left({2},{1}\right)}{N}{S}{K}{B}{2}={\left({1},{1}\right)},{\left(-{1},{1}\right)}{\left({3},{7}={5}^{\cdot}{\left({1},{1}\right)}+{2}^{\cdot}{\left(-{1},{1}\right)}{N}{S}{K}{B}{2}={\left({1},{2}\right)},{\left({2},{1}\right)}{\left({0},{3}\right)}={2}^{\cdot}{\left({1},{2}\right)}-{2}^{\cdot}{\left({2},{1}\right)}{N}{S}{K}{\left({8},{10}\right)}={4}^{\cdot}{\left({1},{2}\right)}+{2}^{\cdot}{\left({2},{1}\right)}{N}{S}{K}{B}{2}={\left({1},{2}\right)},{\left(-{2},{1}\right)}{\left({0},{5}\right)}={N}{S}{K}{\left({1},{7}\right)}=\right.}\) a. Use graph technique to find the coordinate in the second basis. (10 points) b. Show that each basis is orthogonal. (5 points) c. Determine if each basis is normal. (5 points) d. Find the transition matrix from the standard basis to the alternate basis. (15 points)
asked 2020-10-20
Consider the linear transformation \(\displaystyle{U}:{R}^{{3}}\rightarrow{R}^{{3}}\) defined by \(\displaystyle{U}{\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{x}\backslash{y}\backslash{z}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{z}-{y}\backslash{z}+{y}\backslash{3}{z}-{x}-{y}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}\) and the bases PSK\epsilon = \left\{ \left(\begin{array}{c}1\\ 0 \\0\end{array}\right), \left(\begin{array}{c}0\\ 1 \\ 0\end{array}\right), \left(\begin{array}{c}0\\ 0 \\ 1\end{array}\right) \right\}, \gamma = \left\{ \left(\begin{array}{c}1 - i\\ 1 + i \\ 1 \end{array}\right), \left(\begin{array}{c} -1\\ 1 \\ 0\end{array}\right), \left(\begin{array}{c}0\\ 0 \\ 1\end{array}\right) \right\}, Compute the four coordinate matrices \(\displaystyle{{\left[{U}\right]}_{{\epsilon}}^{{\gamma}}},{{\left[{U}\right]}_{{\gamma}}^{{\gamma}}},\)
asked 2020-11-05
Consider the linear transformation \(\displaystyle{U}:{R}^{{3}}\rightarrow{R}^{{3}}\) defined by \(\displaystyle{U}{\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{x}\backslash{y}\backslash{z}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{z}-{y}\backslash{z}+{y}\backslash{3}{z}-{x}-{y}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}\) and the bases PSK\epsilon = \left\{ \left(\begin{array}{c}1\\ 0 \\0\end{array}\right), \left(\begin{array}{c}0\\ 1 \\ 0\end{array}\right), \left(\begin{array}{c}0\\ 0 \\ 1\end{array}\right) \right\}, \gamma = \left\{ \left(\begin{array}{c}1 - i\\ 1 + i \\ 1 \end{array}\right), \left(\begin{array}{c} -1\\ 1 \\ 0\end{array}\right), \left(\begin{array}{c}0\\ 0 \\ 1\end{array}\right) \right\}, Compute the four coordinate matrices \(\displaystyle{{\left[{U}\right]}_{{\epsilon}}^{{\epsilon}}},{{\left[{U}\right]}_{{\gamma}}^{{\epsilon}}}\)
asked 2021-02-21
All bases considered in these are assumed to be ordered bases. In Exercise, compute the coordinate vector of v with respect to the giving basis S for V. V is \(\displaystyle{R}^{{2}},{S}=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace},{v}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}\backslash-{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\\)
asked 2021-02-25
All bases considered in these are assumed to be ordered bases. In Exercise, compute coordinate vector v with respect to the giving basis S for V. V is \(\displaystyle{M}_{{22}},{S}=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&-{1}\backslash{0}&{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}&{1}\backslash{1}&{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&{0}\backslash{0}&-{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&{0}\backslash-{1}&{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace},{v}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&{3}\backslash-{2}&{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}.\)
asked 2021-02-14
All bases considered in these are assumed to be ordered bases. In Exercise, compute the coordinate vector of v with respect to the giving basis S for V. V is \(\displaystyle{M}_{{22}},{S}=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&{0}\backslash{0}&{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}&{0}\backslash{1}&{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}&{1}\backslash{0}&{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}&{0}\backslash{0}&{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace},{v}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&{0}\backslash-{1}&{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}.\)
asked 2021-01-19
Consider the following vectors in \(\displaystyle{R}^{{4}}:\) \(\displaystyle{v}_{{1}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{v}_{{2}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{v}_{{3}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{v}_{{4}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) a. Explain why \(\displaystyle{B}=\le{f}{t}{\left\lbrace{v}_{{1}},{v}_{{2}},{v}_{{3}},{v}_{{4}}{r}{i}{g}{h}{t}\right\rbrace}\)
forms a basis for \(\displaystyle{R}^{{4}}.\) b. Explain how to convert \(\displaystyle\le{f}{t}{\left\lbrace{x}{r}{i}{g}{h}{t}\right\rbrace}_{{B}},\) the representation of a vector x in the coordinates defined by B, into x, its representation in the standard coordinate system. c. Explain how to convert the vector x into,\(\displaystyle{\left\lbrace{x}\right\rbrace}_{{B}},\) its representation in the coordinate system defined by B
asked 2020-11-02
Consider the following two bases for \(\displaystyle{R}^{{3}}\) :
\(\displaystyle\alpha\:=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{1}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}-{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}\backslash{1}\backslash-{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace}{\quad\text{and}\quad}\beta\:=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}-{2}\backslash{3}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}\backslash-{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace}\) If \(\displaystyle{\left[{x}\right]}_{{\alpha}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{2}\backslash-{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}_{{\alpha}}{t}{h}{e}{n}{f}\in{d}{\left[{x}\right]}_{{\beta}}\)
(that is, express x in the \(\displaystyle\beta\) coordinates).
...