Evaluate <msqrt> − 3 x 2 </mrow> + x

hisyhauttaq84w

hisyhauttaq84w

Answered question

2022-05-11

Evaluate 3 x 2 + x + 4 d x.

Answer & Explanation

Raelynn Parker

Raelynn Parker

Beginner2022-05-12Added 12 answers

This integral could not be completed using integration by parts. Mathway will use another method.

Complete the square.

-3(x-16)2+4912dx

Let u1=x-16. Then du1=dx. Rewrite using u1 and du1.

-3u12+4912du1

To write -3u12 as a fraction with a common denominator, multiply by 1212.

-3u121212+4912du1

Simplify terms.

-3u1212+4912du1

Simplify the numerator.

(7+6u1)(7-6u1)12du1

Rewrite (7+6u1)(7-6u1)12 as (12)2(7+6u1)(7-6u1)3.

(12)2(7+6u1)(7-6u1)3du1

Pull terms out from under the radical.

12(7+6u1)(7-6u1)3du1

Rewrite (7+6u1)(7-6u1)3 as (7+6u1)(7-6u1)3.

12(7+6u1)(7-6u1)3du1

Multiply (7+6u1)(7-6u1)3 by 33.

12((7+6u1)(7-6u1)333)du1

Combine and simplify the denominator.

12(7+6u1)(7-6u1)33du1

Combine using the product rule for radicals.

12(7+6u1)(7-6u1)33du1

Multiply 12(7+6u1)(7-6u1)33.

(7+6u1)(7-6u1)36du1

Simplify by multiplying through.

(21+18u1)(7-6u1)6du1

Expand (21+18u1)(7-6u1) using the FOIL Method.

217+21(-6u1)+18u17+18u1(-6u1)6du1

Simplify and combine like terms.

147-108u126du1

Since 16 is constant with respect to u1, move 16 out of the integral.

16147-108u12du1

Let u1=76sin(t), where -π2tπ2. Then du1=7cos(t)6dt. Note that since -π2tπ27cos(t)6 is positive.

16(73)2-108(76sin(t))27cos(t)6dt

Simplify terms.

1649cos2(t)36dt

Since 4936 is constant with respect to t, move 4936 out of the integral.

16(4936cos2(t)dt)

Simplify.

49336cos2(t)dt

Use the half-angle formula to rewrite cos2(t) as 1+cos(2t)2.

493361+cos(2t)2dt

Since 12 is constant with respect to t, move 12 out of the integral.

49336(121+cos(2t)dt)

Simplify.

493721+cos(2t)dt

Split the single integral into multiple integrals.

49372(dt+cos(2t)dt)

Apply the constant rule.

49372(t+C+cos(2t)dt)

Let u2=2t. Then du2=2dt, so 12du2=dt. Rewrite using u2 and du2.

49372(t+C+cos(u2)12du2)

Combine cos(u2) and 12.

49372(t+C+cos(u2)2du2)

Since 12 is constant with respect to u2, move 12 out of the integral.

49372(t+C+12cos(u2)du2)

The integral of cos(u2) with respect to u2 is sin(u2).

49372(t+C+12(sin(u2)+C))

Simplify.

49372(t+12sin(u2))+C

Substitute back in for each integration substitution variable.

49372(arcsin(6(x-16)7)+12sin(2arcsin(6(x-16)7)))+C

Simplify.

493arcsin(6x-17)72+493sin(2arcsin(6x-17))144+C

Reorder terms.

49372arcsin(6x-17)+493144sin(2arcsin(6x-17))+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?