Question

Consider the elliptical-cylindrical coordinate system (eta, psi, z)

Alternate coordinate systems
ANSWERED
asked 2020-12-30

Consider the elliptical-cylindrical coordinate system (eta, psi, z), defined by \(x = a \ \cos h \ \eta \cos \psi, y = a \sin h\ \eta \sin \psi; z = z,\ \eta \ GE \ 0, 0 \ LE \ \psi LE \ 2 \pi, \ z R. In \ PS6\)
it was shown that this is an orthogonal coordinate system with scale factors \(\displaystyle{h}_{{1}}={h}_{{2}}={a}{\left({{\text{cosh}}^{{2}}\ }\eta-{{\cos}^{{2}}\psi}\right)}^{{{\frac{{{1}}}{{{2}}}}}}.\)
Determine the dual bases \(\displaystyle{\left({E}{1},{E}{2},{E}{3}\right)},{\left(\eta,\eta\psi,{z}\right)}.{S}{h}{o}{w}{t}\hat{:}{f}={a}\frac{{1}}{{a}}\frac{{\left({{\text{cosh}}^{{2}}{e}}{a}{t}-{{\cos}^{{s}}\psi}\right)}^{{1}}}{{2}}{\left[\frac{{f}}{\eta}{e}{1}+\frac{{f}}{\psi}{e}{2}+\frac{{f}}{{z}}{e}{3},\frac{{f}}{{w}}{h}{e}{r}{e}{\left({e}{1},{e}{2},{e}{3}\right)}\right.}\) denotes the unit coordinate basis.

Answers (1)

2020-12-31
Given that magnitude of gradient along x and y direction is \(\displaystyle{h}_{{1}}={h}_{{2}}={a}{\left({{\text{cosh}}^{{2}}\ }\eta-{{\cos}^{{2}}\psi}\right)}^{{{\frac{{{1}}}{{{2}}}}}}.\) and along z direction = h3 =1 Hence delf = vectors in direction of del/magnitude \(\displaystyle={\frac{{{1}}}{{{\left({\text{cosh}{\eta}}-{{\cos}^{{2}}\psi}\right)}^{{{\frac{{{1}}}{{{2}}}}}}}}}\rbrace{\left[{\frac{{{\frac{{\partial{f}}}{{\partial\eta}}}}}{{{e}{1}}}}+{\frac{{{\frac{{\partial{f}}}{{\partial\backslash\psi}}}}}{{{e}{2}}}}\right]}+{e}{3}{\frac{{\partial{f}}}{{\partial{z}}}}\)
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2020-11-17

The coordinates of the point in the \(\displaystyle{x}' {y}'\) - coordinate system with the given angle of rotation and the xy-coordinates.

asked 2020-11-01

Let \(\displaystyle\gamma={\left\lbrace{t}^{{2}}-{t}+{1},{t}+{1},{t}^{{2}}+{1}\right\rbrace}{\quad\text{and}\quad}\beta={\left\lbrace{t}^{{2}}+{t}+{4},{4}{t}^{{2}}-{3}{t}+{2},{2}{t}^{{2}}+{3}\right\rbrace}{b}{e}{\quad\text{or}\quad}{d}{e}{r}{e}{d}{b}{a}{s}{e}{s}{f}{\quad\text{or}\quad}{P}_{{2}}{\left({R}\right)}.\) Find the change of coordinate matrix Q that changes \(\beta \text{ coordinates into } \gamma-\text{ coordinates}\)

asked 2021-01-31

(10%) In \(R^2\), there are two sets of coordinate systems, represented by two distinct bases: \((x_1, y_1)\) and \((x_2, y_2)\). If the equations of the same ellipse represented by the two distinct bases are described as follows, respectively: \(2(x_1)^2 -4(x_1)(y_1) + 5(y_1)^2 - 36 = 0\) and \((x_2)^2 + 6(y_2)^2 - 36 = 0.\) Find the transformation matrix between these two coordinate systems: \((x_1, y_1)\) and \((x_2, y_2)\).

asked 2020-10-18

Given the elow bases for \(R^2\) and the point at the specified coordinate in the standard basis as below, (40 points)

\((B1 = \left\{ (1, 0), (0, 1) \right\} \)&

\( B2 = (1, 2), (2, -1) \}\)(1, 7) = \(3^* (1, 2) - (2, 1)\)
\(B2 = (1, 1), (-1, 1) (3, 7 = 5^* (1, 1) + 2^* (-1,1)\)
\(B2 = (1, 2), (2, 1) \ \ \ (0, 3) = 2^* (1, 2) -2^* (2, 1)\)
\((8,10) = 4^* (1, 2) + 2^* (2, 1)\)
B2 = (1, 2), (-2, 1) (0, 5) =
(1, 7) =

a. Use graph technique to find the coordinate in the second basis. (10 points) b. Show that each basis is orthogonal. (5 points) c. Determine if each basis is normal. (5 points) d. Find the transition matrix from the standard basis to the alternate basis. (15 points)

 

...