For a car that is accelerating linearly, the non-inertial frame of reference is the driver in the car where from his reference frame, the car is stationary. It is so called stationary because the non-inertial frame of reference has the same acceleration as the car. Is like the car's acceleration "transform" the driver frame of reference into a non-inertial. That's why in the non-inertial frame of reference, there is no force acting on the car.

But when the car is driving in circles at a constant speed, in the non-inertial frame of reference there is a force acting on the car, which is the centripetal force. Why isn't this frame of reference like the above, not having the acceleration found in their each respective inertial reference frame? Why can't we have a non-inertial reference frame(due to rotation) whereby there is no centripetal force, subsequently eradicating the need for a centrifugal force?

But when the car is driving in circles at a constant speed, in the non-inertial frame of reference there is a force acting on the car, which is the centripetal force. Why isn't this frame of reference like the above, not having the acceleration found in their each respective inertial reference frame? Why can't we have a non-inertial reference frame(due to rotation) whereby there is no centripetal force, subsequently eradicating the need for a centrifugal force?