The article “Stochastic Modeling for Pavement Warranty Cost Estimation” (J. of Constr. Engr. and Mgmnt., 2009: 352–359) proposes the following model for the distribution of Y = time to pavement failure. Let X_{1} be the time to failure due to rutting, and X_{2} be the time to failure due to transverse cracking, these two rvs are assumed independent. Then Y=min (X_{1}, X_{2}). The probability of failure due to either one of these distress modes is assumed to be an increasing function of time t. After making certain distributional assumptions, the following form of the cdf for each mode is obtained: Phi [(a+bt)/(c+dt+et^{2})^{1/2}] where Uparrow Phi is the standard normal cdf. Values of the five parameters a, b, c, d, and e are -25.49, 1.15, 4.45, -1.78, and .171 for cracking and -21.27, .03

Question
Modeling data distributions
asked 2021-01-23
The article “Stochastic Modeling for Pavement Warranty Cost Estimation” (J. of Constr. Engr. and Mgmnt., 2009: 352–359) proposes the following model for the distribution of Y = time to pavement failure. Let \(\displaystyle{X}_{{{1}}}\) be the time to failure due to rutting, and \(\displaystyle{X}_{{{2}}}\) be the time to failure due to transverse cracking, these two rvs are assumed independent. Then \(\displaystyle{Y}=\min{\left({X}_{{{1}}},{X}_{{{2}}}\right)}\). The probability of failure due to either one of these distress modes is assumed to be an increasing function of time t. After making certain distributional assumptions, the following form of the cdf for each mode is obtained: \(\displaystyle\Phi{\left[\frac{{{a}+{b}{t}}}{{\left({c}+{\left.{d}{t}\right.}+{e}{t}^{{{2}}}\right)}^{{\frac{{1}}{{2}}}}}\right]}\) where \(\displaystyle{U}{p}{a}{r}{r}{o}{w}\Phi\) is the standard normal cdf. Values of the five parameters a, b, c, d, and e are -25.49, 1.15, 4.45, -1.78, and .171 for cracking and -21.27, .0325, .972, -.00028, and .00022 for rutting. Determine the probability of pavement failure within \(\displaystyle{t}={5}\) years and also \(\displaystyle{t}={10}\) years.

Answers (1)

2021-01-24
Step 1 Cracking \(\displaystyle\Phi{\left(\frac{{{a}+{b}{t}}}{{\left({c}+{\left.{d}{t}\right.}+{e}{t}^{{{2}}}\right)}^{{\frac{{1}}{{2}}}}}\right.}\)
\(\displaystyle{a}=-{25.49}\)
\(\displaystyle{b}={1.15}\)
\(\displaystyle{c}={4.45}\)
\(\displaystyle{d}=-{1.78}\)
\(\displaystyle{e}={0.171}\) Determine the corresponding probability using the normal probability table. \(\displaystyle{t}={5}\Phi{\left(\frac{{{a}+{b}{t}}}{{\left({c}+{\left.{d}{t}\right.}+{e}{t}^{{{2}}}\right)}^{{\frac{{1}}{{2}}}}}\right)}\)
\(\displaystyle=\Phi{\left({\frac{{-{25.49}+{1.15}{\left({5}\right)}}}{{{\left({4.45}+{\left(-{1.78}\right)}{\left({5}\right)}+{0.171}{\left({5}\right)}^{{{2}}}\right)}^{{\frac{{1}}{{2}}}}}}}\right)}\)
\(\displaystyle=\Phi{\left({\frac{{-{19.74}}}{{{\left(-{0.175}\right)}^{{\frac{{1}}{{2}}}}}}}\right)}\) =Underfined \(\displaystyle{t}={10}\Phi{\left(\frac{{{a}+{b}{t}}}{{\left({c}+{\left.{d}{t}\right.}+{e}{t}^{{{2}}}\right)}^{{\frac{{1}}{{2}}}}}\right)}\)
\(\displaystyle=\Phi{\left({\frac{{-{25.49}+{1.15}{\left({10}\right)}}}{{{\left({4.45}+{\left(-{1.78}\right)}{\left({10}\right)}+{0.171}{\left({10}\right)}^{{{2}}}\right)}^{{\frac{{1}}{{2}}}}}}}\right)}\)
\(\displaystyle=\Phi{\left(-{7.22}\right)}\)
\(\displaystyle\approx{0}\) Note that the probability is undefined when \(\displaystyle{t}={5}\), because the expression under the square root (1/2) is negative and the square root of a negative number doesn't exist. Step 2 Cracking \(\displaystyle\Phi{\left(\frac{{{a}+{b}{t}}}{{\left({c}+{\left.{d}{t}\right.}+{e}{t}^{{{2}}}\right)}^{{\frac{{1}}{{2}}}}}\right)}\)
\(\displaystyle{a}=-{21.27}\)
\(\displaystyle{b}={0.0325}\)
\(\displaystyle{c}={0.972}\)
\(\displaystyle{d}=-{0.00028}\)
\(\displaystyle{e}={0.00022}\) Determine the corresponding probability using the normal probability y table. \(\displaystyle\Phi{\left({x}\right)}\) is approximately when x is a value smaller than all z-scores in the table \(\displaystyle{t}={5}\ \Phi{\left(\frac{{{a}+{b}{t}}}{{\left({c}+{\left.{d}{t}\right.}+{e}{t}^{{{2}}}\right)}^{{\frac{{1}}{{2}}}}}\right)}\)
\(\displaystyle=\Phi{\left({\frac{{-{21.27}+{0.0325}{\left({5}\right)}}}{{{\left({0.972}+{\left(-{0.00028}\right)}{\left({5}\right)}+{0.00022}{\left({5}\right)}^{{{2}}}\right)}^{{\frac{{1}}{{2}}}}}}}\right\rbrace}\)
\(\displaystyle=\Phi{\left(-{21.36}\right)}\)
\(\displaystyle\approx{0}\)
\(\displaystyle{t}={10}\ \Phi{\left(\frac{{{a}+{b}{t}}}{{\left({c}+{\left.{d}{t}\right.}+{e}{t}^{{{2}}}\right)}^{{\frac{{1}}{{2}}}}}\right)}\)
\(\displaystyle=\Phi{\left({\frac{{-{21.27}+{0.0325}{\left({10}\right)}}}{{{\left({0.972}+{\left(-{0.00028}\right)}{\left({10}\right)}+{0.00022}{\left({10}\right)}^{{{2}}}\right)}^{{\frac{{1}}{{2}}}}}}}\right)}\)
\(\displaystyle\Phi{\left(-{21.04}\right)}\)
\(\displaystyle\approx{0}\)
0

Relevant Questions

asked 2020-11-20
The article “Modeling Sediment and Water Column Interactions for Hydrophobic Pollutants” (Water Research, 1984: 1169-1174) suggests the uniform distribution on the interval (7.5, 20) as a model for depth (cm) of the bioturbation layer in sediment in a certain region. a. What are the mean and variance of depth? b. What is the cdf of depth? c. What is the probability that observed depth is at most 10? Between 10 and 15? d. What is the probability that the observed depth is within 1 standard deviation of the mean value? Within 2 standard deviations?
asked 2021-03-11
An automobile tire manufacturer collected the data in the table relating tire pressure x​ (in pounds per square​ inch) and mileage​ (in thousands of​ miles). A mathematical model for the data is given by
\(\displaystyle​ f{{\left({x}\right)}}=-{0.554}{x}^{2}+{35.5}{x}-{514}.\)
\(\begin{array}{|c|c|} \hline x & Mileage \\ \hline 28 & 45 \\ \hline 30 & 51\\ \hline 32 & 56\\ \hline 34 & 50\\ \hline 36 & 46\\ \hline \end{array}\)
​(A) Complete the table below.
\(\begin{array}{|c|c|} \hline x & Mileage & f(x) \\ \hline 28 & 45 \\ \hline 30 & 51\\ \hline 32 & 56\\ \hline 34 & 50\\ \hline 36 & 46\\ \hline \end{array}\)
​(Round to one decimal place as​ needed.)
\(A. 20602060xf(x)\)
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (28,45), (30,51), (32,56), (34,50), and (36,46). A parabola opens downward and passes through the points (28,45.7), (30,52.4), (32,54.7), (34,52.6), and (36,46.0). All points are approximate.
\(B. 20602060xf(x)\)
Acoordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2.
Data points are plotted at (43,30), (45,36), (47,41), (49,35), and (51,31). A parabola opens downward and passes through the points (43,30.7), (45,37.4), (47,39.7), (49,37.6), and (51,31). All points are approximate.
\(C. 20602060xf(x)\)
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (43,45), (45,51), (47,56), (49,50), and (51,46). A parabola opens downward and passes through the points (43,45.7), (45,52.4), (47,54.7), (49,52.6), and (51,46.0). All points are approximate.
\(D.20602060xf(x)\)
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (28,30), (30,36), (32,41), (34,35), and (36,31). A parabola opens downward and passes through the points (28,30.7), (30,37.4), (32,39.7), (34,37.6), and (36,31). All points are approximate.
​(C) Use the modeling function​ f(x) to estimate the mileage for a tire pressure of 29
\(\displaystyle​\frac{{{l}{b}{s}}}{{{s}{q}}}\in.\) and for 35
\(\displaystyle​\frac{{{l}{b}{s}}}{{{s}{q}}}\in.\)
The mileage for the tire pressure \(\displaystyle{29}\frac{{{l}{b}{s}}}{{{s}{q}}}\in.\) is
The mileage for the tire pressure \(\displaystyle{35}\frac{{{l}{b}{s}}}{{{s}{q}}}\) in. is
(Round to two decimal places as​ needed.)
(D) Write a brief description of the relationship between tire pressure and mileage.
A. As tire pressure​ increases, mileage decreases to a minimum at a certain tire​ pressure, then begins to increase.
B. As tire pressure​ increases, mileage decreases.
C. As tire pressure​ increases, mileage increases to a maximum at a certain tire​ pressure, then begins to decrease.
D. As tire pressure​ increases, mileage increases.
asked 2021-01-02
The article "Modeling Sediment and Water Column Interactions for Hydrophobic Pollutants" (Water Research, $1984: 1169-1174$ ) suggests the uniform distribution on the interval (7.5,20) as a model for depth (cm) of the bioturbation layer in sediment in a certain region.
What are the mean and variance of depth?
b. What is the cdf of depth?
What is the probability that observed depth is at most 10? Between 10 and $15 ?$
What is the probability that the observed depth is within 1 standard deviation of the mean value? Within 2 standard deviations?
asked 2021-01-17
A new thermostat has been engineered for the frozen food cases in large supermarkets. Both the old and new thermostats hold temperatures at an average of \(25^{\circ}F\). However, it is hoped that the new thermostat might be more dependable in the sense that it will hold temperatures closer to \(25^{\circ}F\). One frozen food case was equipped with the new thermostat, and a random sample of 21 temperature readings gave a sample variance of 5.1. Another similar frozen food case was equipped with the old thermostat, and a random sample of 19 temperature readings gave a sample variance of 12.8. Test the claim that the population variance of the old thermostat temperature readings is larger than that for the new thermostat. Use a \(5\%\) level of significance. How could your test conclusion relate to the question regarding the dependability of the temperature readings? (Let population 1 refer to data from the old thermostat.)
(a) What is the level of significance?
State the null and alternate hypotheses.
\(H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}\)
(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)
What are the degrees of freedom?
\(df_{N} = ?\)
\(df_{D} = ?\)
What assumptions are you making about the original distribution?
The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.
(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?
At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
(e) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.
asked 2020-10-23
A random sample of \(\displaystyle{n}_{{1}}={16}\) communities in western Kansas gave the following information for people under 25 years of age.
\(\displaystyle{X}_{{1}}:\) Rate of hay fever per 1000 population for people under 25
\(\begin{array}{|c|c|} \hline 97 & 91 & 121 & 129 & 94 & 123 & 112 &93\\ \hline 125 & 95 & 125 & 117 & 97 & 122 & 127 & 88 \\ \hline \end{array}\)
A random sample of \(\displaystyle{n}_{{2}}={14}\) regions in western Kansas gave the following information for people over 50 years old.
\(\displaystyle{X}_{{2}}:\) Rate of hay fever per 1000 population for people over 50
\(\begin{array}{|c|c|} \hline 94 & 109 & 99 & 95 & 113 & 88 & 110\\ \hline 79 & 115 & 100 & 89 & 114 & 85 & 96\\ \hline \end{array}\)
(i) Use a calculator to calculate \(\displaystyle\overline{{x}}_{{1}},{s}_{{1}},\overline{{x}}_{{2}},{\quad\text{and}\quad}{s}_{{2}}.\) (Round your answers to two decimal places.)
(ii) Assume that the hay fever rate in each age group has an approximately normal distribution. Do the data indicate that the age group over 50 has a lower rate of hay fever? Use \(\displaystyle\alpha={0.05}.\)
(a) What is the level of significance?
State the null and alternate hypotheses.
\(\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}<\mu_{{2}}\)
\(\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}>\mu_{{2}}\)
\(\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}\ne\mu_{{2}}\)
\(\displaystyle{H}_{{0}}:\mu_{{1}}>\mu_{{2}},{H}_{{1}}:\mu_{{1}}=\mu_{{12}}\)
(b) What sampling distribution will you use? What assumptions are you making?
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations,
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations,
The Student's t. We assume that both population distributions are approximately normal with known standard deviations,
What is the value of the sample test statistic? (Test the difference \(\displaystyle\mu_{{1}}-\mu_{{2}}\). Round your answer to three decimalplaces.)
What is the value of the sample test statistic? (Test the difference \(\displaystyle\mu_{{1}}-\mu_{{2}}\). Round your answer to three decimal places.)
(c) Find (or estimate) the P-value.
P-value \(\displaystyle>{0.250}\)
\(\displaystyle{0.125}<{P}-\text{value}<{0},{250}\)
\(\displaystyle{0},{050}<{P}-\text{value}<{0},{125}\)
\(\displaystyle{0},{025}<{P}-\text{value}<{0},{050}\)
\(\displaystyle{0},{005}<{P}-\text{value}<{0},{025}\)
P-value \(\displaystyle<{0.005}\)
Sketch the sampling distribution and show the area corresponding to the P-value.
P.vaiue Pevgiue
P-value f P-value
asked 2020-10-23
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P \((A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).\)
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
asked 2020-10-23
1. Find each of the requested values for a population with a mean of \(? = 40\), and a standard deviation of \(? = 8\) A. What is the z-score corresponding to \(X = 52?\) B. What is the X value corresponding to \(z = - 0.50?\) C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores? E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\) 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\). 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.
asked 2020-12-07
Would you rather spend more federal taxes on art? Of a random sample of \(n_{1} = 86\) politically conservative voters, \(r_{1} = 18\) responded yes. Another random sample of \(n_{2} = 85\) politically moderate voters showed that \(r_{2} = 21\) responded yes. Does this information indicate that the population proportion of conservative voters inclined to spend more federal tax money on funding the arts is less than the proportion of moderate voters so inclined? Use \(\alpha = 0.05.\) (a) State the null and alternate hypotheses. \(H_0:p_{1} = p_{2}, H_{1}:p_{1} > p_2\)
\(H_0:p_{1} = p_{2}, H_{1}:p_{1} < p_2\)
\(H_0:p_{1} = p_{2}, H_{1}:p_{1} \neq p_2\)
\(H_{0}:p_{1} < p_{2}, H_{1}:p_{1} = p_{2}\) (b) What sampling distribution will you use? What assumptions are you making? The Student's t. The number of trials is sufficiently large. The standard normal. The number of trials is sufficiently large.The standard normal. We assume the population distributions are approximately normal. The Student's t. We assume the population distributions are approximately normal. (c)What is the value of the sample test statistic? (Test the difference \(p_{1} - p_{2}\). Do not use rounded values. Round your final answer to two decimal places.) (d) Find (or estimate) the P-value. (Round your answer to four decimal places.) (e) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level alpha? At the \(\alpha = 0.05\) level, we reject the null hypothesis and conclude the data are statistically significant. At the \(\alpha = 0.05\) level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the \(\alpha = 0.05\) level, we fail to reject the null hypothesis and conclude the data are not statistically significant. At the \(\alpha = 0.05\) level, we reject the null hypothesis and conclude the data are not statistically significant. (f) Interpret your conclusion in the context of the application. Reject the null hypothesis, there is sufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Fail to reject the null hypothesis, there is sufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Fail to reject the null hypothesis, there is insufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Reject the null hypothesis, there is insufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters.
asked 2021-01-15
The article “Anodic Fenton Treatment of Treflan MTF” describes a two-factor experiment designed to study the sorption of the herbicide trifluralin. The factors are the initial trifluralin concentration and the \(\displaystyle{F}{e}^{{{2}}}\ :\ {H}_{{{2}}}\ {O}_{{{2}}}\) delivery ratio. There were three replications for each treatment. The results presented in the following table are consistent with the means and standard deviations reported in the article. \(\displaystyle{b}{e}{g}\in{\left\lbrace{m}{a}{t}{r}{i}{x}\right\rbrace}\text{Initial Concentration (M)}&\text{Delivery Ratio}&\text{Sorption (%)}\ {15}&{1}:{0}&{10.90}\quad{8.47}\quad{12.43}\ {15}&{1}:{1}&{3.33}\quad{2.40}\quad{2.67}\ {15}&{1}:{5}&{0.79}\quad{0.76}\quad{0.84}\ {15}&{1}:{10}&{0.54}\quad{0.69}\quad{0.57}\ {40}&{1}:{0}&{6.84}\quad{7.68}\quad{6.79}\ {40}&{1}:{1}&{1.72}\quad{1.55}\quad{1.82}\ {40}&{1}:{5}&{0.68}\quad{0.83}\quad{0.89}\ {40}&{1}:{10}&{0.58}\quad{1.13}\quad{1.28}\ {100}&{1}:{0}&{6.61}\quad{6.66}\quad{7.43}\ {100}&{1}:{1}&{1.25}\quad{1.46}\quad{1.49}\ {100}&{1}:{5}&{1.17}\quad{1.27}\quad{1.16}\ {100}&{1}:{10}&{0.93}&{0.67}&{0.80}\ {e}{n}{d}{\left\lbrace{m}{a}{t}{r}{i}{x}\right\rbrace}\) a) Estimate all main effects and interactions. b) Construct an ANOVA table. You may give ranges for the P-values. c) Is the additive model plausible? Provide the value of the test statistic, its null distribution, and the P-value.
asked 2020-11-24
According to the article “Modeling and Predicting the Effects of Submerged Arc Weldment Process Parameters on Weldment Characteristics and Shape Profiles” (J. of Engr. Manuf., 2012: 1230–1240), the submerged arc welding (SAW) process is commonly used for joining thick plates and pipes. The heat affected zone (HAZ), a band created within the base metal during welding, was of particular interest to the investigators. Here are observations on depth (mm) of the HAZ both when the current setting was high and when it was lower. PSK\begin{matrix} Non-high & 1.04 & 1.15 & 1.23 & 1.69 & 1.92 & 1.98 & 2.36 & 2.49 & 2.72 & 1.37 & 1.43 & 1.57 & 1.71 & 1.94 & 2.06 & 2.55 & 2.64 & 2.82 \\ High & 1.55 & 2.02 & 2.02 & 2.05 & 2.35 & 2.57 & 2.93 & 2.94 & 2.97 \\ \end{matrix}ZSK c. Does it appear that true average HAZ depth is larger for the higher current condition than for the lower condition? Carry out a test of appropriate hypotheses using a significance level of .01.
...