# Sketch a graph of the function. Use transformations of functions when ever possible. f(x)= frac{1}{3}(x - 5), 2 leq x leq 8 Question
Transformations of functions Sketch a graph of the function. Use transformations of functions when ever possible. $$\displaystyle{f{{\left({x}\right)}}}=\ {\frac{{{1}}}{{{3}}}}{\left({x}\ -\ {5}\right)},\ {2}\ \leq\ {x}\ \leq\ {8}$$ 2021-02-26
Step 1 Shown is the graph of $$\displaystyle{f{{\left({x}\right)}}}=\ {\frac{{{1}}}{{{3}}}}{\left({x}\ -\ {5}\right)}$$
$$\displaystyle{2}\ \leq\ {x}\ \leq\ {8}$$ x is on the horizontal axis and y is on the vertical axis. Step 2 ### Relevant Questions Sketch a graph of the function. Use transformations of functions when ever possible. $$\displaystyle{f{{\left({x}\right)}}}=\ {\frac{{{1}}}{{{\left({x}\ -\ {1}\right)}^{{{3}}}}}}$$ Sketch a graph of the function. Use transformations of functions when ever possible. $$\displaystyle{f{{\left({x}\right)}}}=\ -{\frac{{{1}}}{{{x}^{{{2}}}}}}$$ Sketch a graph of the function. Use transformations of functions when ever possible. $$\displaystyle{f{{\left({x}\right)}}}=\ -{\frac{{{1}}}{{{4}}}}{x}^{{{2}}}$$ Sketch a graph of the function. Use transformations of functions when ever possible.
$$\displaystyle{f{{\left({x}\right)}}}={2}{x}^{{{2}}}-{1}$$ Sketch a graph of the function. Use transformations of functions when ever possible. $$\displaystyle{f{{\left({x}\right)}}}={1}\ -\ \sqrt{{{x}\ +\ {2}}}$$ Sketch a graph of the function. Use transformations of functions when ever possible.
$$\displaystyle{f{{\left({x}\right)}}}={\left|{x}+{1}\right|}$$ Sketch a graph of the function. Use transformations of functions when ever possible. $$\displaystyle{f{{\left({x}\right)}}}=\sqrt{{{3}}}{\left\lbrace-{x}\right\rbrace}$$ g is related to one of the six parent functions. (a) Identify the parent function f. (b) Describe the sequence of transformations from f to g. (c) Sketch the graph of g by hand. (d) Use function notation to write g in terms of the parent function f.$$\displaystyle{g{{\left({x}\right)}}}={\frac{{{1}}}{{{3}}}}{\left({x}-{2}\right)}^{{{3}}}$$ $$\displaystyle{h}{\left({x}\right)}={\left(-{x}\right)}^{{{2}}}-{8}$$ Sketch a graph of the function. Use transformations of functions whenever possible. $$\displaystyle{f{{\left({x}\right)}}}=\ {\frac{{{1}}}{{{\left({x}\ -\ {1}\right)}^{{{3}}}}}}$$