How can I find ${\lambda}_{H}$ and ${\lambda}_{T}$ such that

$\underset{0\le {\lambda}_{H},\text{}{\lambda}_{T}\text{}\le 1}{max}\{\frac{4.6575342\times {10}^{-4}}{2.1722965\times {10}^{-4}+{\lambda}_{H}},\frac{1.0958904\times {10}^{-2}}{3.4311896\times {10}^{-4}+{\lambda}_{T}}\}1?$

Is this problem equivalent to finding $x$ and $y$ such that

$\underset{0\text{}\le \text{}x,\text{}y\text{}\text{}\le \text{}1}{min}\{.4664048+(2147.0588450)x,0.0313096+(91.2500009)y\}\ge 1?$

$\underset{0\le {\lambda}_{H},\text{}{\lambda}_{T}\text{}\le 1}{max}\{\frac{4.6575342\times {10}^{-4}}{2.1722965\times {10}^{-4}+{\lambda}_{H}},\frac{1.0958904\times {10}^{-2}}{3.4311896\times {10}^{-4}+{\lambda}_{T}}\}1?$

Is this problem equivalent to finding $x$ and $y$ such that

$\underset{0\text{}\le \text{}x,\text{}y\text{}\text{}\le \text{}1}{min}\{.4664048+(2147.0588450)x,0.0313096+(91.2500009)y\}\ge 1?$