Step 1
By drawing the curve \(\displaystyle{f{{\left({x}\right)}}}=\ -{8}{x}^{{{2}}}\ +\ {95}{x}\ +\ {745}\) (expected) and marking the points in the graph (actual) we get it is given below.
The residual value is calculated as
\(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}\text{Residual value}=\text{Actual value}-\text{Expected value}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)

\(\displaystyle\text{Residual value at}\ {x}={0},\ {R}_{{{0}}}={730}\ -\ {745}\)

\(\displaystyle={b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}-{15}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)

\(\displaystyle\text{Residual value at}\ {x}={1},\ {R}_{{{1}}}={850}\ -\ {832}\)

\(\displaystyle={b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}+{18}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)

\(\displaystyle\text{Residual value at}\ {x}={2},\ {R}_{{{2}}}={930}\ -\ {903}\)

\(\displaystyle={b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}+{27}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)

\(\displaystyle\text{Residual value at}\ {x}={3},\ {R}_{{{3}}}={951}\ -\ {958}\)

\(\displaystyle={b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}-{7}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)

\(\displaystyle\text{Residual value at}\ {x}={4},\ {R}_{{{4}}}={1010}\ -\ {997}\)

\(\displaystyle={b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}+{13}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\) Step 2 By plotting the residual value to the graph which is given below, we can see that the points are randomly scattered through the graph. This indicates that the line is a Good Fot.

\(\displaystyle\text{Residual value at}\ {x}={0},\ {R}_{{{0}}}={730}\ -\ {745}\)

\(\displaystyle={b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}-{15}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)

\(\displaystyle\text{Residual value at}\ {x}={1},\ {R}_{{{1}}}={850}\ -\ {832}\)

\(\displaystyle={b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}+{18}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)

\(\displaystyle\text{Residual value at}\ {x}={2},\ {R}_{{{2}}}={930}\ -\ {903}\)

\(\displaystyle={b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}+{27}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)

\(\displaystyle\text{Residual value at}\ {x}={3},\ {R}_{{{3}}}={951}\ -\ {958}\)

\(\displaystyle={b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}-{7}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)

\(\displaystyle\text{Residual value at}\ {x}={4},\ {R}_{{{4}}}={1010}\ -\ {997}\)

\(\displaystyle={b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}+{13}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\) Step 2 By plotting the residual value to the graph which is given below, we can see that the points are randomly scattered through the graph. This indicates that the line is a Good Fot.