What is $\left(\begin{array}{cc}5& 4\\ -7& 1\end{array}\right)$ plus $\left(\begin{array}{cc}1& 7\\ 3& 6\end{array}\right)$?

Damion Hardin
2022-05-07
Answered

What is $\left(\begin{array}{cc}5& 4\\ -7& 1\end{array}\right)$ plus $\left(\begin{array}{cc}1& 7\\ 3& 6\end{array}\right)$?

You can still ask an expert for help

Athena Blanchard

Answered 2022-05-08
Author has **8** answers

Add the corresponding elements.

$\left[\begin{array}{cc}5+1& 4+7\\ -7+3& 1+6\end{array}\right]$

Simplify each element of the matrix $\left[\begin{array}{cc}5+1& 4+7\\ -7+3& 1+6\end{array}\right]$.

$\left[\begin{array}{cc}6& 11\\ -4& 7\end{array}\right]$

asked 2021-01-31

Find a basis for the space of $2\times 2$ diagonal matrices.

$\text{Basis}=\{\left[\begin{array}{cc}& \\ & \end{array}\right],\left[\begin{array}{cc}& \\ & \end{array}\right]\}$

asked 2021-02-08

Let B be a 4x4 matrix to which we apply the following operations:

1. double column 1,

2. halve row 3,

3. add row 3 to row 1,

4. interchange columns 1 and 4,

5. subtract row 2 from each of the other rows,

6. replace column 4 by column 3,

7. delete column 1 (column dimension is reduced by 1).

(a) Write the result as a product of eight matrices.

(b) Write it again as a product of ABC (same B) of three matrices.

1. double column 1,

2. halve row 3,

3. add row 3 to row 1,

4. interchange columns 1 and 4,

5. subtract row 2 from each of the other rows,

6. replace column 4 by column 3,

7. delete column 1 (column dimension is reduced by 1).

(a) Write the result as a product of eight matrices.

(b) Write it again as a product of ABC (same B) of three matrices.

asked 2021-01-13

Determine which matrices are in reduced echelon form and which others are only in echelon form.

a)$\left[\begin{array}{cccc}1& 0& 1& 0\\ 0& 1& 1& 0\\ 0& 0& 0& 1\end{array}\right]$

b)$\left[\begin{array}{ccccc}0& 1& 1& 1& 1\\ 0& 0& 1& 1& 1\\ 0& 0& 0& 0& 1\\ 0& 0& 0& 0& 0\end{array}\right]$

c)$\left[\begin{array}{cccc}1& 5& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 1\end{array}\right]$
ф

a)

b)

c)

asked 2021-02-21

Determine the null space of each of the following matrices:

$\left[\begin{array}{cccc}1& 1& -1& 2\\ 2& 2& -3& 1\\ -1& -1& 0& -5\end{array}\right]$

asked 2020-11-23

Which of the following sets are equal?

A = {a,b,c,d}

B = {d,e,a,c}

C = {d,b,a,c}

D = {a,a,d,e,c,e}

A = {a,b,c,d}

B = {d,e,a,c}

C = {d,b,a,c}

D = {a,a,d,e,c,e}

asked 2020-12-25

For the given systems of linear equations, determine the values of ${b}_{1},{b}_{2},\text{and}{b}_{3}$ necessary for the system to be consistent. (Using matrices)

$x-y+3z={b}_{1}$

$3x-3y+9z={b}_{2}$

$-2x+2y-6z={b}_{3}$

asked 2021-01-25

Suppose that $\left[\begin{array}{cccc}4& A& 2& 4\\ -7& -4& -4& B\end{array}\right]+\left[\begin{array}{cccc}0& 7& C& 2\\ 3& D& 4& -7\end{array}\right]=\left[\begin{array}{cccc}4& 3& 10& 6\\ -4& -5& 0& -4\end{array}\right]$

What are the values of A,B,C and D ?

What are the values of A,B,C and D ?