# Sketch a graph of the function. Use transformations of functions whenever possible. f(x)=|x + 1| Question
Transformations of functions Sketch a graph of the function. Use transformations of functions whenever possible. $$\displaystyle{f{{\left({x}\right)}}}={\left|{x}\ +\ {1}\right|}$$ 2020-12-23
First graph function $$\displaystyle{y}={\left|{x}\right|}$$ Then, to obtain graph of function $$\displaystyle{f{{\left({x}\right)}}}={\left|{x}\ +\ {z}\right|}$$, do following transformations: - shift 1 unit to the left On graph: Red - $$\displaystyle{y}={\left|{x}\right|}$$ Blue - $$\displaystyle{f{{\left({x}\right)}}}={\left|{x}\ +\ {1}\right|}$$ ### Relevant Questions Sketch a graph of the function. Use transformations of functions whenever possible. $$\displaystyle{f{{\left({x}\right)}}}={1}-\sqrt{{{x}}}+{2}$$ Sketch a graph of the function. Use transformations of functions whenever possible. $$\displaystyle{f{{\left({x}\right)}}}=-{\left({x}-{1}\right)}^{{{4}}}$$ Sketch a graph of the function. Use transformations of functions whenever possible. $$\displaystyle{f{{\left({x}\right)}}}=\ {\frac{{{1}}}{{{\left({x}\ -\ {1}\right)}^{{{3}}}}}}$$ Sketch a graph of the function. Use transformations of functions whenever possible. $$\displaystyle{f{{\left({x}\right)}}}={2}{x}^{{{2}}}\ -\ {1}$$ Sketch a graph of the function. Use transformations of functions whenever possible. $$\displaystyle{f{{\left({x}\right)}}}={3}{x}^{{{2}}}$$ Sketch a graph of the function. Use transformations of functions when ever possible. $$\displaystyle{f{{\left({x}\right)}}}=\sqrt{{{3}}}{\left\lbrace-{x}\right\rbrace}$$ $$\displaystyle{f{{\left({x}\right)}}}={2}{x}^{{{2}}}-{1}$$ $$\displaystyle{f{{\left({x}\right)}}}={\left|{x}+{1}\right|}$$ Sketch a graph of the function. Use transformations of functions when ever possible. $$\displaystyle{f{{\left({x}\right)}}}=\ -{\frac{{{1}}}{{{x}^{{{2}}}}}}$$ Sketch a graph of the function. Use transformations of functions when ever possible. $$\displaystyle{f{{\left({x}\right)}}}=\ {\frac{{{1}}}{{{3}}}}{\left({x}\ -\ {5}\right)},\ {2}\ \leq\ {x}\ \leq\ {8}$$