Question

Consider the following linear transformation T : P_2 rightarrow

Alternate coordinate systems
ANSWERED
asked 2020-11-10

Consider the following linear transformation \(T : P_2 \rightarrow P_3\), given by \(T(f) = 3x^2 f\)'. That is, take the first derivative and then multiply by \(3x^2\) (a) Find the matrix for T with respect to the standard bases of \(P_n\): that is, find \([T]_{\epsilon}^{\epsilon}\), where- \(\epsilon = {1, x, x^2 , x^n}\) (b) Find N(T) and R(T). You can either work with polynomials or with their coordinate vectors with respect to the standard basis. Write the answers as spans of polynomials. (c) Find the the matrix for T with respect to the alternate bases: \([T]_A^B\) where \(A = {x - 1, x, x^2 + 1}, B = {x^3, x, x^2, 1}.\)

Answers (1)

2020-11-11

Sulotion: Given that nebce that to the \(\displaystyle{T}:{P}_{{2}}\rightarrow{P}_{{3}}{T}{\left({f}\right)}={3}{x}^{{2}}{f}'\) a) \(B = \left\{ 1, x, x^2 \right\}, \gamma = \left\{ 1, x, x^2, x^3 \right\} \ T(1) = 0.1 + 0.x + 0.x^2 + 0.x^3 \ T(x) = 3 x^2 \cdot 1 = 0.1 + 0 \cdot x + 3x^2 + 0 \cdot x^3 \ T(x^2) = = 3x^2 \cdot 2x = 6x^3 = 0.1 + 0.x + 0.x^2 + 0 x^3 \ [T]_B^{\gamma} = A = \begin{bmatrix}0 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 6\\ \end{bmatrix}\) b. That to that the \(N(1) \cdot A x = 0 \ \begin{bmatrix}0 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 6\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \\ 0 \end{bmatrix} \ 3x^2 = 0;\ 6x^3 = 0; \ x_2 = 0\) Let then the \(n(1) = 5 pon | \left\{ 1, 0, x \right\}\) spon let \(\displaystyle{P}{\left({x}\right)}={7}+{8}{x}+\gamma{x}^{{2}}\in{P}_{{2}}\) hence that to Let then to \(T(P) = A - \begin{bmatrix} x\\ B \\ \gamma \end{bmatrix} = \begin{bmatrix}0 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 6\\ \end{bmatrix} \begin{bmatrix} x \\ 0B\\ \gamma \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3B \\ 6 \gamma\\ \end{bmatrix}\) Then the \(R(T) = span \left\{ (0, 0, 1, 0)^T (0, 0, 0)^T \right\}\) is spon \(\left\{ x^2, x \right\}\) c. \(A = \left\{ x^{-1}, x, x^2 + 1 \right\} B = \left\{ x^3, x, x^2 \right\}\) Let the then \(T(x - 1) = 3 x^2 - 1 = 0.x^3 + 0.x + 3 x^2 + 0.1\)
\(T(x) = 3x^2 - (1) = 0.x^3 + 0.1\)
\(T(x^2 +1) = 3x^2(2x) = 6.x^3 + 0.x + 0.x^2 + 0.1\)
\([T]_{A}^{B} = \begin{bmatrix}0 & 0 & 6 \\ 0 & 0 & 0\\ 3 & 3 & 0\\ 0 & 0 & 0\\ \end{bmatrix}\)

0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2020-10-20

Consider the linear transformation \(\displaystyle{U}:{R}^{{3}}\rightarrow{R}^{{3}}\) defined by \(U \left(\begin{array}{c}x\\ y \\z \end{array}\right) = \left(\begin{array}{c} z - y \\ z + y \\ 3z - x - y \end{array}\right)\) and the bases \(\epsilon = \left\{ \left(\begin{array}{c}1\\ 0 \\0\end{array}\right), \left(\begin{array}{c}0\\ 1 \\ 0\end{array}\right), \left(\begin{array}{c}0\\ 0 \\ 1\end{array}\right) \right\}, \gamma = \left\{ \left(\begin{array}{c}1 - i\\ 1 + i \\ 1 \end{array}\right), \left(\begin{array}{c} -1\\ 1 \\ 0\end{array}\right), \left(\begin{array}{c}0\\ 0 \\ 1\end{array}\right) \right\}\), Compute the four coordinate matrices \(\displaystyle{{\left[{U}\right]}_{{\epsilon}}^{{\gamma}}},{{\left[{U}\right]}_{{\gamma}}^{{\gamma}}},\)

asked 2020-12-28

Assume that T is a linear transformation. Find the standard matrix of T.
\(\displaystyle{T}=\mathbb{R}^{{2}}\rightarrow\mathbb{R}^{{4}}\ {s}{u}{c}{h} \ {t}\hat \ {{T}}{\left({e}_{{1}}\right)}={\left({7},{1},{7},{1}\right)},{\quad\text{and}\quad}{T}{\left({e}_{{2}}\right)}={\left(-{8},{5},{0},{0}\right)},{w}{h}{e}{r}{e}{\ e}_{{1}}={\left({1},{0}\right)},{\quad\text{and}\quad}{e}_{{2}}={\left({0},{1}\right)}\).

asked 2020-11-01

Let \(\displaystyle\gamma={\left\lbrace{t}^{{2}}-{t}+{1},{t}+{1},{t}^{{2}}+{1}\right\rbrace}{\quad\text{and}\quad}\beta={\left\lbrace{t}^{{2}}+{t}+{4},{4}{t}^{{2}}-{3}{t}+{2},{2}{t}^{{2}}+{3}\right\rbrace}{b}{e}{\quad\text{or}\quad}{d}{e}{r}{e}{d}{b}{a}{s}{e}{s}{f}{\quad\text{or}\quad}{P}_{{2}}{\left({R}\right)}.\) Find the change of coordinate matrix Q that changes \(\beta \text{ coordinates into } \gamma-\text{ coordinates}\)

asked 2020-11-02

Consider the following two bases for \(\displaystyle{R}^{{3}}\) :
\(\alpha := \left\{ \begin{bmatrix} 2 \\ 1\\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix}3 \\ 1 \\ -1 \end{bmatrix} \right\} and\ \beta := \left\{ \begin{bmatrix}1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix}-2 \\ 3\\ 1 \end{bmatrix}, \begin{bmatrix}2 \\ 3\\ -1 \end{bmatrix} \right\}\) If \([x]_{\alpha} = \begin{bmatrix}1 \\ 2 \\-1 \end{bmatrix}_{\alpha} then\ find\ [x]_{\beta}\)
(that is, express x in the \(\displaystyle\beta\) coordinates).

...