Give a correct answer for given question (A) Argue why { (1,0,3), (2,3,1), (0,0,1) } is a coordinate system ( bases ) for R^3 ? (B) Find the coordinates of (7, 6, 16) relative to the set in part (A)

Question
Alternate coordinate systems
asked 2021-01-23
Give a correct answer for given question (A) Argue why { (1,0,3), (2,3,1), (0,0,1) } is a coordinate system ( bases ) for R^3 ? (B) Find the coordinates of (7, 6, 16) relative to the set in part (A)

Answers (1)

2021-01-24
Given \(\displaystyle{B}=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace}\) By definition, we say that tha vector \(\displaystyle\le{f}{t}{\left\lbrace{v}_{{1}},{v}_{{2}},\ldots,{v}_{{n}}{r}{i}{g}{h}{t}\right\rbrace}\) are linearly dependent if there exists scalars \(\displaystyle\alpha_{{1}},\alpha_{{2}},\ldots,\alpha_{{n}}\) not all of them zero such that \(\displaystyle\alpha_{{1}}{v}_{{1}}+\alpha_{{2}}{v}_{{2}}+\ldots+\alpha_{{n}}{v}_{{n}}=\overline{{0}}.\) We say that the vectors \(\displaystyle\le{f}{t}{\left\lbrace{v}_{{1}},{v}_{{2}},\ldots,{v}_{{n}}{r}{i}{g}{h}{t}\right\rbrace}\) are linearly independent if \(\displaystyle\alpha_{{1}}{v}_{{1}}+\alpha_{{2}}{v}_{{2}}+\ldots+\alpha_{{n}}{v}_{{n}}=\overline{{0}}\) then \alpha_1 = \alpha_2 = ... = \alpha_n = 0ZSK The set of vectors \(\displaystyle\le{f}{t}{\left\lbrace{v}_{{1}},{v}_{{2}},\ldots,{v}_{{n}}{r}{i}{g}{h}{t}\right\rbrace}\) is said to be a basis for vector space V if i) set of vectors \(\displaystyle\le{f}{t}{\left\lbrace{v}_{{1}},{v}_{{2}},\ldots,{v}_{{n}}{r}{i}{g}{h}{t}\right\rbrace}\) is linearly independent ii) span \(\displaystyle\le{f}{t}{\left\lbrace{v}_{{1}},{v}_{{2}},\ldots,{v}_{{n}}{r}{i}{g}{h}{t}\right\rbrace}={V}\) If B = \(\displaystyle\le{f}{t}{\left\lbrace{b}_{{1}},{b}_{{2}},\ldots,{b}_{{n}}{r}{i}{g}{h}{t}\right\rbrace}\) is a basis in a vector space V than every vector \(\displaystyle{o}{v}{e}{r}\rightarrow{\left\lbrace{v}\right\rbrace}\in{V}\) can be uniquely expressed as a linear combination of basis vectors \(\displaystyle{b}_{{1}},{b}_{{2}},\ldots,{b}_{{n}}.\) i.e there exists unique scalsrs \(\displaystyle\alpha_{{1}},\alpha_{{2}},\ldots,\alpha_{{n}}\) such that, \(\displaystyle{o}{v}{e}{r}\rightarrow{\left\lbrace{v}\right\rbrace}=\alpha_{{1}}{b}_{{1}}+,\alpha_{{2}}{b}_{{2}}+\ldots+\alpha_{{n}}{b}_{{n}}.\) The coordinates of the vector \overrightarrow{v} relative to the basis \(\displaystyle{B}\) is the sequence of co-ordinates, i.e. [v]_B = (\alpha_1, \alpha_2, .., \alpha_n)ZSK Consider \(\displaystyle{A}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&{2}&{0}\backslash{0}&{3}&{0}\backslash{3}&{1}&{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) Applying \(\displaystyle{R}_{{3}}\rightarrow{R}_{{3}}-{3}{R}_{{1}},\) we get
\(\displaystyle{A}\sim{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&{2}&{0}\backslash{0}&{3}&{0}\backslash{0}&-{5}&{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) Applying \(\displaystyle{R}_{{3}}\rightarrow{5}{R}_{{2}}+{3}{R}_{{3}},\) we get PSK\sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} (\because in eacelon form, first, second and third columns have pivot elements) \(\displaystyle\therefore\) The set of vectors \(\displaystyle\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace}\) is linearly independent dim \(\displaystyle{\left({R}^{{3}}\right)}={3}{N}{S}{K}\dim{\left({s}{p}{a}{n}\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace}\right)}={3}{N}{S}{K}\Rightarrow{s}{p}{a}{n}\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace}={R}^{{3}}{N}{S}{K}\therefore\) Basis for \(\displaystyle{R}^{{3}}{i}{s}\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace}\) b. Let \(\displaystyle{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{7}\backslash{6}\backslash{16}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}={\left({a}\right)}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}+{\left({b}\right)}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}+{\left({c}\right)}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{N}{S}{K}\Rightarrow{a}+{2}{b}={7}\rightarrow{\left({i}\right)}{N}{S}{K}{3}{b}={6}{N}{S}{K}\Rightarrow{b}={2}\rightarrow{\left({i}{i}\right)}{N}{S}{K}{3}{a}+{b}+{c}={16}\rightarrow{\left({i}{i}{i}\right)}\) From (i), \(\displaystyle{a}={7}-{2}{b}={7}-{4}={3}.\) From (ii), \(\displaystyle{3}{a}+{b}+{c}={16}{N}{S}{K}\Rightarrow{c}={16}-{3}{a}-{b}={16}-{9}-{2}={5}{N}{S}{K}\therefore{o}{v}{e}{r}\rightarrow{\left\lbrace{v}\right\rbrace}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{7}\backslash{6}\backslash{16}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}={\left({3}\right)}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}+{\left({2}\right)}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}+{\left({5}\right)}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{N}{S}{K}\therefore\) The coordinates of the vector \overrightarrow{v} = \begin{bmatrix}7 \\ 6 \\ 16 \end{bmatrix} raletive to the basis B = \left\{ \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0\\ 1 \end{bmatrix} \right\}
is [\overrightarrow{v}]_B = (a, b, c) = (3, 3, 5)ZSK
0

Relevant Questions

asked 2020-11-01
Give a full correct answer for given question 1- Let W be the set of all polynomials \(\displaystyle{a}+{b}{t}+{c}{t}^{{2}}\in{P}_{{{2}}}\) such that \(\displaystyle{a}+{b}+{c}={0}\) Show that W is a subspace of \(\displaystyle{P}_{{{2}}},\) find a basis for W, and then find dim(W) 2 - Find two different bases of \(\displaystyle{R}^{{{2}}}\) so that the coordinates of \(\displaystyle{b}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{5}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) are both (2,1) in the coordinate system defined by these two bases
asked 2020-10-18
Given the elow bases for R^2 and the point at the specified coordinate in the standard basis as below, (40 points) \(\displaystyle{B}{1}=\le{f}{t}{\left\lbrace{\left({1},{0}\right)},{\left({0},{1}\right)}{r}{i}{g}{h}{t}\right\rbrace}&{M}{S}{K}{B}{2}={\left({1},{2}\right)},{\left({2},-{1}\right)}{r}{i}{g}{h}{t}\rbrace{\left({1},{7}\right)}={3}^{\cdot}{\left({1},{2}\right)}-{\left({2},{1}\right)}{N}{S}{K}{B}{2}={\left({1},{1}\right)},{\left(-{1},{1}\right)}{\left({3},{7}={5}^{\cdot}{\left({1},{1}\right)}+{2}^{\cdot}{\left(-{1},{1}\right)}{N}{S}{K}{B}{2}={\left({1},{2}\right)},{\left({2},{1}\right)}{\left({0},{3}\right)}={2}^{\cdot}{\left({1},{2}\right)}-{2}^{\cdot}{\left({2},{1}\right)}{N}{S}{K}{\left({8},{10}\right)}={4}^{\cdot}{\left({1},{2}\right)}+{2}^{\cdot}{\left({2},{1}\right)}{N}{S}{K}{B}{2}={\left({1},{2}\right)},{\left(-{2},{1}\right)}{\left({0},{5}\right)}={N}{S}{K}{\left({1},{7}\right)}=\right.}\) a. Use graph technique to find the coordinate in the second basis. (10 points) b. Show that each basis is orthogonal. (5 points) c. Determine if each basis is normal. (5 points) d. Find the transition matrix from the standard basis to the alternate basis. (15 points)
asked 2020-12-30
Since we will be using various bases and the coordinate systems they define, let's review how we translate between coordinate systems. a. Suppose that we have a basis\(\displaystyle{B}={\left\lbrace{v}_{{1}},{v}_{{2}},\ldots,{v}_{{m}}\right\rbrace}{f}{\quad\text{or}\quad}{R}^{{m}}\). Explain what we mean by the representation {x}g of a vector x in the coordinate system defined by B. b. If we are given the representation \(\displaystyle{\left\lbrace{x}\right\rbrace}_{{B}},\) how can we recover the vector x? c. If we are given the vector x, how can we find \(\displaystyle{\left\lbrace{x}\right\rbrace}_{{B}}\)? d. Suppose that BE is a basis for R^2. If {x}_B = \begin{bmatrix}1 \\ -2 \end{bmatrix}ZSK find the vector x. e. If \(\displaystyle{x}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash-{4}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{f}\in{d}{\left\lbrace{x}\right\rbrace}_{{B}}\)
asked 2021-01-19
Consider the following vectors in \(\displaystyle{R}^{{4}}:\) \(\displaystyle{v}_{{1}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{v}_{{2}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{v}_{{3}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{v}_{{4}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) a. Explain why \(\displaystyle{B}=\le{f}{t}{\left\lbrace{v}_{{1}},{v}_{{2}},{v}_{{3}},{v}_{{4}}{r}{i}{g}{h}{t}\right\rbrace}\)
forms a basis for \(\displaystyle{R}^{{4}}.\) b. Explain how to convert \(\displaystyle\le{f}{t}{\left\lbrace{x}{r}{i}{g}{h}{t}\right\rbrace}_{{B}},\) the representation of a vector x in the coordinates defined by B, into x, its representation in the standard coordinate system. c. Explain how to convert the vector x into,\(\displaystyle{\left\lbrace{x}\right\rbrace}_{{B}},\) its representation in the coordinate system defined by B
asked 2021-01-02
Solve the given Alternate Coordinate Systems and give a correct answer 10) Convert the equation from Cartesian to polar coordinates solving for PSKr^2:
\frac{x^2}{9} - \frac{y^2}{16} = 25ZSK
asked 2021-02-25
Consider the bases \(\displaystyle{B}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}\backslash{5}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}{o}{f}{R}^{{2}}{\quad\text{and}\quad}{C}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}{o}{f}{R}^{{3}}\).
and the linear maps PSKS \in L (R^2, R^3) and T \in L(R^3, R^2) given given (with respect to the standard bases) by \(\displaystyle{\left[{S}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}&-{1}\backslash{5}&-{3}\backslash-{3}&{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{\quad\text{and}\quad}{\left[{T}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&-{1}&{1}\backslash{1}&{1}&-{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) Find each of the following coordinate representations. \(\displaystyle{\left({a}\right)}{\left[{S}\right]}_{{{B},{E}}}\)
asked 2020-11-10
Consider the following linear transformation T : P_2 \rightarrow P_3, given by T(f) = 3x^2 f'. That is, take the first derivative and then multiply by 3x^2 (a) Find the matrix for T with respect to the standard bases of P_n: that is, find [T]_{\epsilon}^{\epsilon}, where- \epsilon = {1, x, x^2 , x^n) (b) Find N(T) and R(T). You can either work with polynomials or with their coordinate vectors with respect to the standard basis. Write the answers as spans of polynomials. (c) Find the the matrix for T with respect to the alternate bases: [T]_A^B where A = {x - 1, x, x^2 + 1}, B = {x^3, x, x^2, 1}.
asked 2020-10-18
Given the full and correct answer the two bases of \(\displaystyle{B}{1}=\le{f}{t}{\left\lbrace{\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{2}\backslash{1}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)},{\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{3}\backslash{2}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}{r}{i}{g}{h}{t}\right\rbrace}\)
\(\displaystyle{B}_{{2}}=\le{f}{t}{\left\lbrace{\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{3}\backslash{1}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)},{\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{7}\backslash{2}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}{r}{i}{g}{h}{t}\right\rbrace}\)
find the change of basis matrix from \(\displaystyle{B}_{{1}}\to{B}_{{2}}\) and next use this matrix to covert the coordinate vector
\(\displaystyle{o}{v}{e}{r}\rightarrow{\left\lbrace{v}\right\rbrace}_{{{B}_{{1}}}}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{2}\backslash-{1}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}\) of v to its coodirnate vector
\(\displaystyle{o}{v}{e}{r}\rightarrow{\left\lbrace{v}\right\rbrace}_{{{B}_{{2}}}}\)
asked 2020-11-14
Consider the bases \(\displaystyle{B}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}\backslash{5}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}{o}{f}{R}^{{2}}{\quad\text{and}\quad}{C}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}{o}{f}{R}^{{3}}\).
and the linear maps PSKS \in L (R^2, R^3) and T \in L(R^3, R^2) given given (with respect to the standard bases) by \(\displaystyle{\left[{S}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}&-{1}\backslash{5}&-{3}\backslash-{3}&{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{\quad\text{and}\quad}{\left[{T}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&-{1}&{1}\backslash{1}&{1}&-{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) Find each of the following coordinate representations. \(\displaystyle{\left({b}\right)}{\left[{S}\right]}_{{{E},{C}}}\)
\(\displaystyle{\left({c}\right)}{\left[{S}\right]}_{{{B},{C}}}\)
asked 2020-11-01
Let \(\displaystyle\gamma={\left\lbrace{t}^{{2}}-{t}+{1},{t}+{1},{t}^{{2}}+{1}\right\rbrace}{\quad\text{and}\quad}\beta={\left\lbrace{t}^{{2}}+{t}+{4},{4}{t}^{{2}}-{3}{t}+{2},{2}{t}^{{2}}+{3}\right\rbrace}{b}{e}{\quad\text{or}\quad}{d}{e}{r}{e}{d}{b}{a}{s}{e}{s}{f}{\quad\text{or}\quad}{P}_{{2}}{\left({R}\right)}.\) Find the change of coordinate matrix Q that changes \(\displaystyle\beta{c}\infty{r}{d}\in{a}{t}{e}{s}\int{o}\gamma-{c}\infty{r}{d}\in{a}{t}{e}{s}\)
...