Question

Solve the given Alternate Coordinate Systems and give a correct answer10) Convert the equation from Cartesian to polar coordinates solving for r^2: frac{x^2}{9} - frac{y^2}{16} = 25

Alternate coordinate systems
ANSWERED
asked 2021-01-02

Solve the given Alternate Coordinate Systems and give a correct answer 10) Convert the equation from Cartesian to polar coordinates solving for \(r^2\):
\(\frac{x^2}{9} - \frac{y^2}{16} = 25\)

Expert Answers (1)

2021-01-03

Solution: Relation between polar Co-ordinate system and Cartesian Co-ordinate system \(\displaystyle{x}={r}{\cos{{0}}}{y}={r}{\sin{{0}}}\)

\({r}=\sqrt{{{x}^{{2}}+{y}^{{2}}}}\)

given that - \(\displaystyle{\frac{{{x}^{{2}}}}{{{9}}}}-{\frac{{{y}^{{2}}}}{{{16}}}}={25}\) put \(x = r \cos 0\), \(y = e \sin 0\)
\(\Rightarrow \frac{r^2 cos^2 0}{0} - \frac{r^2 sin^2 0}{16} = 25\)
\(\Rightarrow r^2 [\frac{16 cos^2 0 - 9 sin^2 0}{177}] = 25\)
\(\Rightarrow r^2 = \frac{25 \times 177 }{[(7 cos)^2 - (3 sin)^2]} [a^2 - h^2 = (a - b) (a + b)]\)
\(\Rightarrow r^2 = \frac{25 \times 177}{(7 cos 0 - 3 sin 0)(4 cos 0 + 3 sin 0)}\)
\(\Rightarrow r^2 = \frac{25 \times 177}{5[(\frac{7}{5} cos 0 - \frac{3}{5} sin 0)] 5 [(\frac{7}{5} cos 0 + \frac{3}{5} sin 0)]}\)
\(\Rightarrow r^2 \frac{177}{(\frac{7}{5} cos 0 - \frac{3}{5} sin 0)(\frac{7}{5} cos 0 + \frac{3}{5} sin 0)} [sin(53^{\circ}) = \frac{3}{5}]\)
\(\Rightarrow r^2 = \frac{177}{(sin 53^{\circ} cos 0 - cos 53^{\circ} sin 0)(sin 53^{\circ} cos 0 + cos 53^{\circ} sin 0)}\)  formula 

\(\displaystyle{\sin{{\left({A}+{B}\right)}}}={\sin{{A}}}{\cos{{B}}}+{\cos{{A}}}{\sin{{B}}}\)

\({\sin{{\left({A}-{B}\right)}}}={\sin{{A}}}{\cos{{B}}}-{\cos{{A}}}{\sin{{B}}}\)

\(\Rightarrow{r}^{{2}}{\frac{{{177}}}{{{\left[{\sin{{\left({53}-{0}\right)}}}\right]}{\left[{\sin{{\left({53}+{0}\right)}}}\right]}}}}\)

\(\Rightarrow{r}^{{2}}={\frac{{{177}}}{{{\left[{\sin{{\left({53}-{0}\right)}}}\right]}{\left[{\sin{{\left({0}+{53}\right)}}}\right]}}}}\)

Finally answer is \(\displaystyle\Rightarrow{r}^{{2}}={\frac{{{177}}}{{{\left[{\sin{{\left({53}-{0}\right)}}}\right]}{\left[{\sin{{\left({0}+{53}\right)}}}\right]}}}}\)

28
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-08-01

For the polar point \(\displaystyle{\left(-{4},-{\frac{{{3}\pi}}{{{4}}}}\right)}\)
a) Give alternate coordinates with \(\displaystyle{r}{>}{0}\) and \(\displaystyle-{2}\pi\leq\theta{<}{0}\).
b) Give alternate coordinates with \(\displaystyle{r}{<}{0}\) and \(\displaystyle{0}\leq\theta{<}{2}\pi\).
c) Give alternate coordinates of your choice.

asked 2021-08-02

Below are various vectors in cartesian, cylindrical and spherical coordinates. Express the given vectors in two other coordinate systems outside the coordinate system in which they are expressed
\(a) \overrightarrow{A}(x,y,z)=\overrightarrow{e}_{x}\)
\(d)\overrightarrow{A}(\rho, \phi, z)= \overrightarrow{e}_{\rho}\)
\(g)\overrightarrow{A}(r, \theta, \phi)=\overrightarrow{e}_{\theta}\)
\(j)\overrightarrow{A}(x,y,z)=\frac{-y\overrightarrow{e}_{x}+x\overrightarrow{e}_{y}}{x^{2}+y^{2}}\)

asked 2021-02-09

To determine:
a) Whether the statement, " The point with Cartesian coordinates \(\displaystyle{\left[\begin{array}{cc} -{2}&\ {2}\end{array}\right]}\) has polar coordinates \(\displaystyle{\left[{b}{f}{\left({2}\sqrt{{{2}}},\ {\frac{{{3}\pi}}{{{4}}}}\right)}\ {\left({2}\sqrt{{{2}}},{\frac{{{11}\pi}}{{{4}}}}\right)}\ {\left({2}\sqrt{{{2}}},\ -{\frac{{{5}\pi}}{{{4}}}}\right)}\ {\quad\text{and}\quad}\ {\left(-{2}\sqrt{{2}},\ -{\frac{{\pi}}{{{4}}}}\right)}\right]}\) " is true or false.
b) Whether the statement, " the graphs of \(\displaystyle{\left[{r}{\cos{\theta}}={4}\ {\quad\text{and}\quad}\ {r}{\sin{\theta}}=\ -{2}\right]}\) intersect exactly once " is true or false.
c) Whether the statement, " the graphs of \(\displaystyle{\left[{r}={4}\ {\quad\text{and}\quad}\ \theta={\frac{{\pi}}{{{4}}}}\right]}\) intersect exactly once ", is true or false.
d) Whether the statement, " the point \(\displaystyle{\left[\begin{array}{cc} {3}&{\frac{{\pi}}{{{2}}}}\end{array}\right]}{l}{i}{e}{s}\ {o}{n}\ {t}{h}{e}\ {g}{r}{a}{p}{h}\ {o}{f}{\left[{r}={3}{\cos{\ }}{2}\ \theta\right]}\) " is true or false.
e) Whether the statement, " the graphs of \(\displaystyle{\left[{r}={2}{\sec{\theta}}\ {\quad\text{and}\quad}\ {r}={3}{\csc{\theta}}\right]}\) are lines " is true or false.

asked 2021-02-08

To find: The equivalent polar equation for the given rectangular-coordinate equation.
Given:
\(\displaystyle{x}^{2}+{y}^{2}+{8}{x}={0}\)

...