# Determine the number of solutions of the congruence x^{4}equiv61(mod 117) Question
Congruence Determine the number of solutions of the congruence $$x^{4}\equiv61(mod\ 117)$$ 2020-12-26
Step 1
Given: $$x^{4}\equiv61(mod\ 117)$$
$$117=3^{2}times 13$$
As $$(phi(9))/(4,phi(9))=6/(4.6)=6/2=3 (here (4.6)denotes the g.c.d of(4.6))$$
and $$(61)^{3}\equiv(-2)^{3}\equiv1(mod\ 9)$$
we deduce the congruence
$$x^{4}\equiv61(mod\ 9)\ has\ (4,\phi(9))=(4.6)=2\ solutions$$
Step 2
Similarity $$y\frac{\phi(13)}{4,\phi(13)}=\frac{12}{4.12}=\frac{12}{4}=3$$
and $$(61)^{3}\equiv(-4)^{3}\equiv1(mod\ 13)$$
So, the congruence $$x^{4}\equiv61(mod\ 13)\ has\ (4,\phi(13))=(4.12)=4\ solutions$$
hence, the number of solutions of the congruence $$x^{4}\equiv61(mod\ 117)\ is\ 2\times 4=8$$.

### Relevant Questions Find all whole number solutions of the congruence equation.
$$\displaystyle{\left({2}{x}+{1}\right)}\equiv{5}\text{mod}{4}$$ Find all whole number solutions of the congruence equation.
$$(2x + 1)\equiv 5\ mod\ 4$$ Consider the system of linear congruences below:
$$\displaystyle{x}\equiv{2}{\left(\text{mod}{5}\right)}$$
$$\displaystyle{2}{x}\equiv{22}{\left(\text{mod}{8}\right)}$$
$$\displaystyle{3}{x}\equiv{12}{\left(\text{mod}{21}\right)}$$
(i)Determine two different systems of linear congruences for which the Chinese Remainder Theorem can be used and which will give at least two of these solutions. Determine whether the congruence is true or false.
$$11\equiv 15 mod\ 4$$ Using Fermat's Little Theorem, solve the congruence $$\displaystyle{2}\cdot{x}^{{{425}}}+{4}\cdot{x}^{{{108}}}-{3}\cdot{x}^{{2}}+{x}-{4}\equiv{0}\text{mod}{107}$$.
Write your answer as a set of congruence classes modulo 107, such as {1,2,3}. Find all solutions to the following system of linear congruences: $$\displaystyle{x}\equiv{1}\text{mod}{2},{x}\equiv{2}\text{mod}{3},{x}\equiv{3}\text{mod}{5},{x}\equiv{4}\text{mod}{7},{x}\equiv{5}\text{mod}{11}$$. Use the construction in the proof of the Chinese remainder theorem to find all solutions to the system of congruences $$\displaystyle{x}\equiv{2}{\left(\text{mod}{3}\right)},{x}\equiv{1}{\left(\text{mod}{4}\right)},{\quad\text{and}\quad}{x}\equiv{3}{\left(\text{mod}{5}\right)}$$. Determine the number of solutions of the congruence $$\displaystyle{x}{4}\equiv{61}{\left(\text{mod}{117}\right)}$$. $$\displaystyle{9}{x}\equiv{3}\text{mod}{15}$$,
$$\displaystyle{5}{x}\equiv{7}\text{mod}{21}$$,
$$\displaystyle{7}{x}\equiv{4}\text{mod}{13}$$. Show that the congruence $$\displaystyle{8}{x}^{{2}}-{x}+{4}\equiv{0}{\left(\text{mod}{9}\right)}$$ has no solution by reducing to the form $$\displaystyle{y}^{{2}}\equiv{a}{\left(\text{mod}{9}\right)}$$