Solve the equation by expressing each side as a power of the same base and then equating exponents. Given: 8^{4x}=3.1

Question
Decimals
asked 2020-12-02
Solve the equation by expressing each side as a power of the same base and then equating exponents. Given: \(\displaystyle{8}^{{{4}{x}}}={3.1}\)

Answers (1)

2020-12-03
Step 1 Since the right side value is in decimals, we can’t express each side as a power of the same base. Step 2 We can solve the equation using properties of logarithm. \(\displaystyle{8}^{{{4}{x}}}={3.1}\)
\(\displaystyle{\ln{{\left({8}^{{{4}{x}}}\right)}}}={\ln{{\left({3.1}\right)}}}\)
\(\displaystyle{4}{x}\ {\ln{{\left({8}\right)}}}={\ln{{\left({3.1}\right)}}}\)
\(\displaystyle{x}={\frac{{{\ln{{\left({3.1}\right)}}}}}{{{12}{\ln{{\left({2}\right)}}}}}}\)
0

Relevant Questions

asked 2021-03-07
Ariel's bedroom is 170in long, 135in wide, and 8.3 ft high. Her bedroom has two windows that measure 15 sq.ft. each and a door that measures 20 sq.ft. Ariel and her daughter, Melody, are going to paint Ariel's bedroom. It is given that 1 gallon of paint covers 150 sq.ft. How many gallons of paint are needed to paint the four walls and the ceiling of Ariel's bedroom with one coat of paint? Round your final answer to two decimals places.
asked 2021-01-31
factor in determining the usefulness of an examination as a measure of demonstrated ability is the amount of spread that occurs in the grades. If the spread or variation of examination scores is very small, it usually means that the examination was either too hard or too easy. However, if the variance of scores is moderately large, then there is a definite difference in scores between "better," "average," and "poorer" students. A group of attorneys in a Midwest state has been given the task of making up this year's bar examination for the state. The examination has 500 total possible points, and from the history of past examinations, it is known that a standard deviation of around 60 points is desirable. Of course, too large or too small a standard deviation is not good. The attorneys want to test their examination to see how good it is. A preliminary version of the examination (with slight modifications to protect the integrity of the real examination) is given to a random sample of 20 newly graduated law students. Their scores give a sample standard deviation of 70 points. Using a 0.01 level of significance, test the claim that the population standard deviation for the new examination is 60 against the claim that the population standard deviation is different from 60.
(a) What is the level of significance?
State the null and alternate hypotheses.
\(H_{0}:\sigma=60,\ H_{1}:\sigma\ <\ 60H_{0}:\sigma\ >\ 60,\ H_{1}:\sigma=60H_{0}:\sigma=60,\ H_{1}:\sigma\ >\ 60H_{0}:\sigma=60,\ H_{1}:\sigma\ \neq\ 60\)
(b) Find the value of the chi-square statistic for the sample. (Round your answer to two decimal places.)
What are the degrees of freedom?
What assumptions are you making about the original distribution?
We assume a binomial population distribution.We assume a exponential population distribution. We assume a normal population distribution.We assume a uniform population distribution.
asked 2021-01-15
Refer to right triangle ABC with \(C = 90^{\circ}.\) Begin each problem by drawing a picture of the triangle with both the given and asked­for information labeled appropriately.
Also, write your answers for angles in decimal degrees.
If \(a = 42.3\ inches\ and\ b = 32.4\) inches, find B
asked 2020-12-29
David worked \(7\frac{1}{3}\) hours today and planted I I trees. It takes him about the same amount of time to plant each tree. How long did it take him to plant each tree? It took him ___________. hour to plant each tree.
asked 2020-12-01
According to a study by Dr. John McDougall of his live-in weight loss program at St. Helena Hospital, the people who follow his program lose between 6 and 15 pounds a month until they approach trim body weight. Let's suppose that the weight loss is uniformly distributed. We are interested in the weight loss of a randomly selected individual following the program for one month. Give the distribution of X. Enter an exact number as an integer, fraction, or decimal.\(\displaystyle{f{{\left({x}\right)}}}=_{_}\) where \(\displaystyle≤{X}≤.\mu=\sigma=\). Find the probability that the individual lost more than 8 pounds in a month.Suppose it is known that the individual lost more than 9 pounds in a month. Find the probability that he lost less than 13 pounds in the month.
asked 2020-11-17
Given exponential equations,
a) \(3^{(4x\ -\ }=11\)
b) \(6^{x\ +\ 3}=3^{x}\)
To solve for x
asked 2020-12-02
Write each of the numbers 1, 8, 27, 64, and 125 as a base raised to the third power.
\(\displaystyle{1}=⎕^{{3}}\)
\(\displaystyle{8}=⎕^{{3}}\)
\(\displaystyle{27}=⎕^{{3}}\)
\(\displaystyle{64}=⎕^{{3}}\)
\(\displaystyle{125}=⎕^{{3}}\)
asked 2020-12-29
Marks will be awarded for accuracy in the rounding of final answers where you are asked to round. To ensure that you receive these marks, take care in keeping more decimals in your intermediate steps than what the question is asking you to round your final answer to.
A fair 7 -sided die with the numbers 1 trough 7 is rolled five times. Express each of your answers as a decimal rounded to 3 decimal places.
(a) What is the probability that exactly one 3 is rolled?
(b) What is the probability that at least one 3 is rolled?
(c) What is the probability that exactly four of the rolls show an even number?
asked 2021-01-05
NASA launches a rocket at t=0 seconds. Its height, in meters above sea-level, as a function of time is given by \(\displaystyle{h}{\left({t}\right)}=-{4.9}{t}^{{{2}}}+{358}{t}+{129}\) Assuming rocket launched at t = 0 and height is measured above sea level in meters.
asked 2021-03-12
Find the solution of the equation rounded to two decimals. 1) \(\displaystyle{3.02}{x}+{1.48}={10.92}\) 2) \(\displaystyle{8.36}-{0.95}{x}={9.97}\) 3) \(\displaystyle{2.15}{x}-{4.63}={x}+{1.19}\)
...