Question

Given the following function: f(x)=1.01e^{4x}-4.62e^{3x}-3.11e^{2x}+12.2e^{x} - 1.99 a)Use three-digit rounding frithmetic, the assumption that e^{1.5

Polynomial arithmetic
ANSWERED
asked 2020-11-01
Given the following function: \(\displaystyle{f{{\left({x}\right)}}}={1.01}{e}^{{{4}{x}}}-{4.62}{e}^{{{3}{x}}}-{3.11}{e}^{{{2}{x}}}+{12.2}{e}^{{{x}}}-{1.99}\) a)Use three-digit rounding frithmetic, the assumption that \(\displaystyle{e}^{{{1.53}}}={4.62}\), and the fact that \(\displaystyle{e}^{{{n}{x}}}={\left({e}^{{{x}}}\right)}^{{{n}}}\) to evaluate \(\displaystyle{f{{\left({1.53}\right)}}}\) b)Redo the same calculation by first rewriting the equation using the polynomial factoring technique c)Calculate the percentage relative errors in both part a) and b) to the true result \(\displaystyle{f{{\left({1.53}\right)}}}=-{7.60787}\)

Answers (1)

2020-11-02

a) \(\displaystyle{f{{\left({x}\right)}}}={1.01}{e}^{{{4}{x}}}-{4.62}{e}^{{3}}{x}-{3.11}{e}^{{{2}{x}}}+{12.2}{e}^{{x}}-{1.99}\)

\({f{{\left({x}\right)}}}={1.01}{\left({e}^{{x}}\right)}^{{4}}-{4.62}{\left({e}^{{x}}\right)}^{{3}}-{3.11}{\left({e}^{{{x}}}\right)}^{{2}}-{12.2}{e}^{{x}}-{1.99}{\left({a}{s}\ {e}^{{{n}{x}}}={\left({e}^{{x}}\right)}^{{n}}\right)}\)

\({f{{\left({1.53}\right)}}}={1.01}{\left({e}^{{{1.53}}}\right)}^{{4}}-{4.62}{\left({e}^{{{1.53}}}\right)}^{{3}}-{3.11}{\left({e}^{{{1.53}}}\right)}^{{2}}+{12.2}{e}^{{{1.53}}}-{1.99}\)

\(={1.01}{\left({4.62}\right)}^{{4}}-{4.62}{\left({4.62}\right)}^{{3}}-{3.11}{\left({4.62}\right)}^{{2}}+{12.2}{\left({4.62}\right)}-{1.99}{\left({a}{s}\ {e}^{{{1.53}={4.62}}}\right)}\)

\(={1.01}{\left({455.583}\right)}-{4.62}{\left({98.611}\right)}-{3.11}{\left({21.344}\right)}+{56.364}-{1.99}\)

\(={460.139}-{455.583}-{66.380}+{54.374}\)

\(=-{7.45}\)

Therefore, the value of f(1.53) abtained by this method is -7.45.

b) The given function can be factorized sa follows. \(\displaystyle{f{{\left({x}\right)}}}={1.01}{\left({e}^{{x}}+{1.715}\right)}{\left({e}^{{x}}-{0.173}\right)}{\left({e}^{{x}}-{1.415}\right)}{\left({e}^{{x}}-{4.702}\right)}\) On substituting \(\displaystyle{x}={1.53}\) and using \(\displaystyle{e}^{{{1.53}}}={4.62},\) we get \(\displaystyle{f{{\left({1.53}\right)}}}={1.01}{\left({4.62}+{1.715}\right)}{\left({4.62}-{0.173}\right)}{\left({4.62}-{1.415}\right)}{\left({4.62}-{4.702}\right)}\)

\(={1.01}{\left({6.335}\right)}{\left({4.447}\right)}{\left({3.205}\right)}{\left(-{0.082}\right)}\)

\(=-{7.478}\)

Therefore, the value of \(\displaystyle{f{{\left({1.53}\right)}}}\) obtained by this method is -7.478.

c) Percentage error \(\displaystyle\delta\) is given by \(\displaystyle\delta={\left|{\frac{{\nu_{{A}}-\nu_{{E}}}}{{\nu_{{E}}}}}\right|}{100}\%\) Here \(\displaystyle\nu_{{A}}\) is the actual value and \(\displaystyle\nu_{{E}}\) is the expected value which is -7.60787 in this case. For the value obtained in part (a), the percentage error is \(\displaystyle\delta_{{a}}={\left|{\frac{{-{7.45}+{7.60787}}}{{-{7.60787}}}}\right|}{100}\%\)

\(={2.057}\%\)

For the value obtained in part (b), the percentage error is \(\displaystyle\delta_{{d}}={\left|{\frac{{-{7.478}+{7.60787}}}{{-{7.60787}}}}\right|}{100}\%\)

\(={1.707}\%\)

Therefore, the percentage error in part (a) is 2.075% and that is part(b) is 1.707%

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2020-10-19
Given the following function:
\(\displaystyle{f{{\left({x}\right)}}}={1.01}{e}^{{{4}{x}}}-{4.62}{e}^{{{3}{x}}}-{3.11}{e}^{{{2}{x}}}+{12.2}{e}^{{{x}}}\)
a) Use three-digit rounding frithmetic, the assumption that \(\displaystyle{e}^{{{1.53}}}={4.62}\), and the fact that \(\displaystyle{e}^{{{n}{x}}}={\left({e}^{{{x}}}\right)}^{{{n}}}\) to evaluate \(\displaystyle{f{{\left({1.53}\right)}}}\)
b) Redo the same calculation by first rewriting the equation using the polynomial factoring technique
c) Calculate the percentage relative errors in both part a) and b) to the true result \(\displaystyle{f{{\left({1.53}\right)}}}=-{7.60787}\)
asked 2021-06-13
1. Who seems to have more variability in their shoe sizes, men or women?
a) Men
b) Women
c) Neither group show variability
d) Flag this Question
2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?
a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation
b) The estimate n-1 is never used to calculate the sample variance and standard deviation
c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population
d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.
\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)
\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)
asked 2021-07-29
Nested Form of a Polynomial Expand Q to prove that the polynomials P and Q are the same.
\(\displaystyle{P}{\left({x}\right)}={3}{x}^{{{4}}}-{5}{x}^{{{3}}}+{x}^{{{2}}}-{3}{x}+{5}\)
\(\displaystyle{Q}{\left({x}\right)}={\left({\left({\left({3}{x}-{5}\right)}{x}+{1}\right)}{x}-{3}\right)}{x}+{5}\)
Try to evalue P(2) and Q(2) in your head, using the forms given. Which is easier? Now write the polinomial \(\displaystyle{R}{\left({x}\right)}={x}^{{{5}}}-{2}{x}^{{{4}}}+{3}{x}^{{{3}}}-{2}{x}^{{{2}}}+{3}{x}+{4}\) in "nested" form, like the polinomial Q. Use the nested form to find R(3) in your head.
asked 2021-05-14
Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.
\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)
a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)
MPa
State which estimator you used.
\(x\)
\(p?\)
\(\frac{s}{x}\)
\(s\)
\(\tilde{\chi}\)
b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).
MPa
State which estimator you used.
\(s\)
\(x\)
\(p?\)
\(\tilde{\chi}\)
\(\frac{s}{x}\)
c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)
MPa
Interpret this point estimate.
This estimate describes the linearity of the data.
This estimate describes the bias of the data.
This estimate describes the spread of the data.
This estimate describes the center of the data.
Which estimator did you use?
\(\tilde{\chi}\)
\(x\)
\(s\)
\(\frac{s}{x}\)
\(p?\)
d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)
e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)
State which estimator you used.
\(p?\)
\(\tilde{\chi}\)
\(s\)
\(\frac{s}{x}\)
\(x\)
...