# Find $$\displaystyle{\sin{{\frac{{\theta}}{{{2}}}}}}$$ when $$\displaystyle{\sin{\theta}}={\frac{{35}}{}}$$, and

Find $\mathrm{sin}\frac{\theta }{2}$ when $\mathrm{sin}\theta =\frac{35}{}$, and ${0}^{\circ }<\theta <{90}^{\circ }$
The answer I'm currently getting is $\sqrt{\frac{1}{10}}$ but the answer must be either
My Process:
since $\mathrm{sin}\frac{\theta }{2}=±\sqrt{\frac{1-\mathrm{cos}\theta }{2}}$
$\sqrt{\frac{1-\frac{4}{5}}{2}}\cdot \sqrt{\frac{5}{5}}=\sqrt{\frac{5-4}{10}}=\sqrt{\frac{1}{10}}$
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

$\frac{\sqrt{10}}{10}=\frac{\sqrt{10}}{\sqrt{10}×\sqrt{10}}=\frac{1}{\sqrt{10}}$
###### Not exactly what you’re looking for?
webhui2v2
I had forgotten that, $\sqrt{\frac{1}{10}}=\frac{\sqrt{1}}{\sqrt{10}}=\frac{1}{\sqrt{10}}\cdot \left(\frac{\sqrt{10}}{\sqrt{10}}\right)=\frac{\sqrt{10}}{10}$