Question

On a clinical day a nurse encounters several situations involving measurements. State the name of each unit and the type of measurements it is a) The

Measurement
ANSWERED
asked 2020-10-26
On a clinical day a nurse encounters several situations involving measurements. State the name of each unit and the type of measurements it is
a) The prothrombin time for a blood sample is 12s
b) A premature baby weights 21 Kg
c) An antacid tablet contains 1.0g of CaCO3 d) An infant has a temperature of 39.2 C

Answers (1)

2020-10-27
Step 1
(a)The prothrombin time for a blood sample is 12s.
The name of unit “s” is given as second.
It is an International System of units (SI) measurement for time.
Step 2
(b)A premature baby weights 21kg.
The name of unit “kg” is given as kilogram.
It is an International System of units (SI) measurement for mass.
Step 3
(c)An antacid tablet contains 1.0g of Calcium carbonate.
The name of unit “g” is given as gram.
It is an International System of units (SI) measurement or metric system measurement for mass.
Step 4
(d)An infant has a temperature of 39.2C.
The nme of unit “C” is given as Centigrade or Celsius.
It is an International System of units (SI) measurement or metric system measurement for temperature.
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-05-14
Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.
\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)
a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)
MPa
State which estimator you used.
\(x\)
\(p?\)
\(\frac{s}{x}\)
\(s\)
\(\tilde{\chi}\)
b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).
MPa
State which estimator you used.
\(s\)
\(x\)
\(p?\)
\(\tilde{\chi}\)
\(\frac{s}{x}\)
c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)
MPa
Interpret this point estimate.
This estimate describes the linearity of the data.
This estimate describes the bias of the data.
This estimate describes the spread of the data.
This estimate describes the center of the data.
Which estimator did you use?
\(\tilde{\chi}\)
\(x\)
\(s\)
\(\frac{s}{x}\)
\(p?\)
d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)
e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)
State which estimator you used.
\(p?\)
\(\tilde{\chi}\)
\(s\)
\(\frac{s}{x}\)
\(x\)
asked 2021-01-13
Loretta, who turns eighty this year, has just learned about blood pressure problems in the elderly and is interested in how her blood pressure compares to those of her peers. Specifically, she is interested in her systolic blood pressure, which can be problematic among the elderly. She has uncovered an article in a scientific journal that reports that the mean systolic blood pressure measurement for women over seventy-five is 133.0 mmHg, with a standard deviation of 5.1 mmHg.
Assume that the article reported correct information. Complete the following statements about the distribution of systolic blood pressure measurements for women over seventy-five.
a) According to Chebyshev's theorem, at least \(?36\% 56\% 75\% 84\%\ or\ 89\%\) of the measurements lie between 122.8 mmHg and 143.2 mmHg.
b) According to Chebyshev's theorem, at least \(8/9 (about\ 89\%)\) of the measurements lie between mmHg and mmHg. (Round your answer to 1 decimal place.)
asked 2021-06-12
Explain why each of the following integrals is improper.
(a) \(\int_6^7 \frac{x}{x-6}dx\)
-Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
-Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
-The integral is a proper integral.
(b)\(\int_0^{\infty} \frac{1}{1+x^3}dx\)
Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
The integral is a proper integral.
(c) \(\int_{-\infty}^{\infty}x^2 e^{-x^2}dx\)
-Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
-Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
-The integral is a proper integral.
d)\(\int_0^{\frac{\pi}{4}} \cot x dx\)
-Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
-Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
-The integral is a proper integral.
asked 2021-01-31
A certain scale has an uncertainty of 3 g and a bias of 2 g. a) A single measurement is made on this scale. What are the bias and uncertainty in this measurement? b) Four independent measurements are made on this scale. What are the bias and uncertainty in the average of these measurements? c) Four hundred independent measurements are made on this scale. What are the bias and uncertainty in the average of these measurements? d) As more measurements are made, does the uncertainty get smaller, get larger, or stay the same? e) As more measurements are made, does the bias get smaller, get larger, or stay the same?
...