To calculate: The vertices and foci of the conic section: x29 + y24=1

Question
Conic sections
asked 2021-01-31
To calculate: The vertices and foci of the conic section: \(\displaystyle{x}{29}\ +\ {y}{24}={1}\)

Answers (1)

2021-02-01
Step 1 Formula Used: Eccentricity PSK(e)=1\ -\ b2a2 Step 2 Calculation: Compare the given equation with the equation of an ellipse \(\displaystyle{x}{2}{a}{2}\ +\ {y}{2}{b}{2}={1}\) and we get: \(\displaystyle{a}{2}={9}\ \Rightarrow\ {a}={3}{b}{2}={4}\ \Rightarrow\ {b}={2}\) Now, \(\displaystyle{e}={1}\ -\ {b}{2}{a}{2}={1}\ -\ {49}={53}\) Vertices are: \(\displaystyle{\left(\pm\ {a},\ {0}\right)}\ \text{and}\ {\left({0},\ \pm\ {b}\right)}\) Now, put the values of a and b to get the vertice of the conic section and we get: \(\displaystyle{\left(\pm\ {a},\ {0}\right)}\ \text{and}\ {\left({0},\ \pm\ {b}\right)}={\left(\pm\ {3},\ {0}\right)}\ \text{and}\ {\left({0},\ \pm\ {2}\right)}\) Now, \(\displaystyle\text{Foci}\ ={\left(\pm\ {a}{e},\ {0}\right)}={\left(\pm\ {5},\ {0}\right)}\) Thus, the vertices and foci of the conic section are: \(\displaystyle{\left(\pm\ {3},\ {0}\right)}\ \text{and}\ {\left({0},\ \pm\ {2}\right)}\ \text{and}\ {\left(\pm\ {5},\ {0}\right)}.\)
0

Relevant Questions

asked 2021-02-20
To find the vertices and foci of the conic section: \(\displaystyle{\frac{{{\left({x}\ -\ {4}\right)}^{{{2}}}}}{{{5}^{{{2}}}}}}\ -\ {\frac{{{\left({y}\ +\ {3}\right)}^{{{2}}}}}{{{6}^{{{2}}}}}}={1}\)
asked 2021-03-07
To calculate the verties and foci of the conic section: \(\displaystyle{\left({x}{9}\right)}{2}\ +\ {\left({y}{4}\right)}{2}={1}\)
asked 2020-12-24
To determine: The conic section and to find the vertices and foci: \(\displaystyle{x}{2}\ -\ {y}{2}{y}={4}\)
asked 2021-01-10
Write the equation of each conic section, given the following characteristics:
a) Write the equation of an ellipse with center at (3, 2) and horizontal major axis with length 8. The minor axis is 6 units long.
b) Write the equation of a hyperbola with vertices at (3, 3) and (-3,3). The foci are located at (4, 3) and (-4, 3).
c) Write the equation of a parabola with vertex at (-2,4) and focus at (-4, 4)
asked 2021-01-06
Write the equation of each conic section, given the following characteristics:
a) Write the equation of an ellipse with center at (3, 2) and horizontal major axis with length 8. The minor axis is 6 units long.
b) Write the equation of a hyperbola with vertices at (3, 3) and (-3, 3). The foci are located at (4, 3) and (-4, 3).
c) Write the equation of a parabola with vertex at (-2, 4) and focus at (-4, 4)
asked 2021-02-10
Identify the conic section given by \(\displaystyle{y}^{2}+{2}{y}={4}{x}^{2}+{3}\)
Find its \(\frac{\text{vertex}}{\text{vertices}}\ \text{and}\ \frac{\text{focus}}{\text{foci}}\)
asked 2021-03-07
Polar equations for conic sections Graph the following conic sections, labeling vertices, foci, directrices, and asymptotes (if they exist). Give the eccentricity of the curve. Use a graphing utility to check your work. \(\displaystyle{r}=\ {\frac{{{10}}}{{{5}\ +\ {2}\ {\cos{\theta}}}}}\)
asked 2020-11-12
Find and calculate the center, foci, vertices, asymptotes, and radius, as appropriate, of the conic sections \(x^2 + 2y^2 - 2x - 4y = -1\)
asked 2021-01-31
Find the center, foci, vertices, asymptotes, and radius, if necessary, of the conic sections in the equation:
\(\displaystyle{x}^{2}+{4}{x}+{y}^{2}={12}\)
asked 2021-01-07
Find the vertices, foci, directrices, and eccentricity of the curve wich polar conic section Consider the equation \(r^{2} = \sec\ 2\ \theta\)
...